Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Medical imaging plays a central role in the diagnosis of brain tumors. Early imaging methods – invasive and sometimes dangerous – such as pneumoencephalography and cerebral angiography have been abandoned in favor of non-invasive, high-resolution techniques, especially magnetic resonance imaging (MRI) and computed tomography (CT) scans. Neoplasms will often show as differently colored masses (also referred to as processes) in CT or MRI results.
- Benign brain tumors often show up as hypodense (darker than brain tissue) mass lesions on CT scans. On MRI, they appear either hypodense or isointense (same intensity as brain tissue) on T1-weighted scans, or hyperintense (brighter than brain tissue) on T2-weighted MRI, although the appearance is variable.
- Contrast agent uptake, sometimes in characteristic patterns, can be demonstrated on either CT or MRI scans in most malignant primary and metastatic brain tumors.
- Pressure areas where the brain tissue has been compressed by a tumor also appear hyperintense on T2-weighted scans and might indicate the presence a diffuse neoplasm due to an unclear outline. Swelling around the tumor known as "peritumoral edema" can also show a similar result.
This is because these tumors disrupt the normal functioning of the BBB and lead to an increase in its permeability. However, it is not possible to diagnose high- versus low-grade gliomas based on enhancement pattern alone.
The definitive diagnosis of brain tumor can only be confirmed by histological examination of tumor tissue samples obtained either by means of brain biopsy or open surgery. The histological examination is essential for determining the appropriate treatment and the correct prognosis. This examination, performed by a pathologist, typically has three stages: interoperative examination of fresh tissue, preliminary microscopic examination of prepared tissues, and follow-up examination of prepared tissues after immunohistochemical staining or genetic analysis.
Usually—depending on the interview of the patient and after a clinical exam which includes a neurological exam, and an ophthalmological exam—a CT scan and or MRI scan will be performed. A special dye may be injected into a vein before these scans to provide contrast and make tumors easier to identify. The neoplasm will be clearly visible.
If a tumor is found, it will be necessary for a neurosurgeon to perform a biopsy of it. This simply involves the removal of a small amount of tumorous tissue, which is then sent to a (neuro)pathologist for examination and staging. The biopsy may take place before surgical removal of the tumor or the sample may be taken during surgery.
The prognosis of brain cancer depends on the type of cancer diagnosed. Medulloblastoma has a good prognosis with chemotherapy, radiotherapy, and surgical resection while glioblastoma multiforme has a median survival of only 12 months even with aggressive chemoradiotherapy and surgery. Brainstem gliomas have the poorest prognosis of any form of brain cancer, with most patients dying within one year, even with therapy that typically consists of radiation to the tumor along with corticosteroids. However, one type, focal brainstem gliomas in children, seems open to exceptional prognosis and long-term survival has frequently been reported.
Grade I pilocytic astrocytoma and cerebellar gliomas are not associated with recurrence after complete resection. Grade II astrocytomas and cerebellar gliomas are more likely to recur after surgical removal. Pilomyxoid astrocytomas may behave more aggressively than classic pilocytic astrocytoma.
After complete surgical removal, in cases of progressive/recurrent disease or when maximal surgical removal has been achieved, chemotherapy and/or radiation therapy will be considered by the medical team.
Immunohistochemistry is performed as additional test. The strong positive expression of cytokeratin 19 was showed in primary SCTC, and negative in metastatic SCTC.
There are no specific radiological tests for SCTC verification. However these tests might be useful for identification of tumor borders and in planning of surgery.
Based on a survey of >800, surgical removal of the entire involved kidney plus the peri-renal fat appeared curative for the majority of all types of mesoblastic nephroma; the patient overall survival rate was 94%. Of the 4% of non-survivors, half were due to surgical or chemotherapeutic treatments. Another 4% of these patients suffered relapses, primarily in the local area of surgery rare cases of relapse due to lung or bone metastasis.. About 60% of these recurrent cases had a complete remission following further treatment. Recurrent disease was treated with a second surgery, radiation, and/or chemotherapy that often vincristine and actinomycin treatment. Removal of the entire afflicted kidney plus the peri-renal fat appears critical to avoiding local recurrences. In general, patients who were older than 3 months of age at diagnosis or had the cellular form of the disease, stage III disease, or involvement of renal lymph nodes had a higher recurrence rate. Among patients with these risk factors, only those with lymph node involvement are recommended for further therapy.
It has been suggested that mesoblastic nephroma patients with lymph node involvement or recurrent disease might benefit by adding the ALK inhibitor, crizotinib, or a tyrosine kinase inhibitor, either larotrectinib or entrectinib, to surgical, radiation, and/or chemotherapy treatment regimens. These drugs inhibit NTRK3's tyrosine kinase activity. Crizotinib has proven useful in treating certain cases of acute lymphoblastic leukemia that are associated with the "ETV6-NTRK3" fusion gene while larotrectinib and entrectinib have been useful in treating various cancers (e.g. a metastatic sarcoma, papillary thyroid cancer, non-small-cell lung carcinoma, gastrointestinal stromal tumor, mammary analog secretory carcinoma, and colorectal cancer) that are driven by mutated, overly active tyrosine kinases. Relevant to this issue, a 16-month-old girl with infantile fibrosarcoma harboring the "ETV6–NTRK3" fusion gene was successfully trated with larotrectinib. The success of these drugs, howwever, will likely depend on the relative malignancy-promoting roles of ETV6-NTRK3 protein's tyrosine kinase activity, the lose of ETV6-related transcription activity accompanying formation of ETV6-NTRK3 protein, and the various trisomy chromosomes that populate mesoblastic nephroma.
Diagnosis of mesoblastic nephroma and its particular type (i.e. classic, mixed, or cellular) is made by histological examination of tissues obtained at surgery. Besides its histological appearance, various features of this disease aid in making a differential diagnosis that distinguish it from the following childhood neoplasms:
- Wilm's tumor is the most common childhood kidney neoplasm, representing some 85% of cases. Unlike mesoblastic nephroma, 3 years of age. Bilateral kidney tumors, concurrent birth defects, and/or metastatic disease at presentation favor a diagnosis of Wilm's tumor.
- congenital infantile sarcoma is a rare aggressive sarcoma typically presenting in the lower extremities, head, or neck of infants during their first year of life. The histology, association with the "ETV6-NRTK3" fusion gene along with certain chromosome trisomies, and the distribution of markers for cell type (i.e. cyclin D1 and Beta-catenin) within this tumor are the same as those found in cellular mesoblastic nephroma. Mesoblastic nephroma and congenital infantile sarcoma appear to be the same diseases with mesoblastic lymphoma originating in the kidney and congenital infantile sarcoma originating in non-renal tissues.
- Rhabdoid tumor, which accounts for 5-510% of childhood kidney neoplasms, occurs predominantly in children from 1 to 2 years of age. Unlike mesoblastic nephroma, rhabdoid tumors may present with tumors in other tissues including in ~13% of cases, the brain. Rhabdoid tumors have a distinctive histology and abnormalities (i.e. loss of heterozygosity, single nucleotide polymorphism, and deletions) in chromosome 22.
- Clear cell sarcoma of the kidney, which is responsible for 5-10% of childhood pediatric tumors, occurs predominantly in children from 2 to 3 years of age. Unlike meoblastic nephorma, clear cell sarcoma of the kidney presents with metastasis, particularly to bone, in 5-6% of cases; it histology is diverse and has been mistaken for mesoblastic nephroma. One chromosomal translocations t,(10;17)(q22;p13), has been repeatedly reported to be associated with clear cell sarcoma of the kidney.
- Infantile myofibromatosis is a fibrous tumor of infancy and childhood most commonly presenting during the first 2 years of life as a single subcutaneous nodule of the head and neck region or less commonly as multiple lesions of skin, muscle, bone, and in ~33% of these latter cases, visceral organs. All of these lesions have an excellent prognosis and can regress spontaneously except for those in which there is visceral involvement where the prognosis is poor. While infantile myofibromatosis and classic mesoblastic nephroma have been suggested to be the same diseases because of their very similar histology, studies on the distribution of cell-type markers (i.e. cyclin D1 and Beta-catenin) indicate that they have different cellular origins.
It is important to exclude a tumor which is directly extending into the ear canal from the parotid salivary gland, especially when dealing with an adenoid cystic or mucoepidermoid carcinoma. This can be eliminated by clinical or imaging studies. Otherwise, the histologic differential diagnosis includes a ceruminous adenoma (a benign ceruminous gland tumor) or a neuroendocrine adenoma of the middle ear (middle ear adenoma).
Wide, radical, complete surgical excision is the treatment of choice, with free surgical margins to achieve the best outcome and lowest chance of recurrence. Radiation is only used for palliation. In general, there is a good prognosis, although approximately 50% of patients die from disease within 3–10 years of presentation.
Neoplasm is an abnormal growth of tissue which, if it forms a mass, is commonly referred to as a tumor. This abnormal growth (neoplasia) usually but not always forms a mass.
ICD-10 classifies neoplasms into four main groups: benign neoplasms, in situ neoplasms, malignant neoplasms, and neoplasms of uncertain or unknown behavior. Malignant neoplasms are also simply known as cancers and are the focus of oncology.
Prior to the abnormal growth of tissue, as neoplasia, cells often undergo an abnormal pattern of growth, such as metaplasia or dysplasia. However, metaplasia or dysplasia does not always progress to neoplasia. The word is from Ancient Greek νέος- "neo" "new" and πλάσμα "plasma" "formation, creation".
Neoplastic tumors are often heterogeneous and contain more than one type of cell, but their initiation and continued growth is usually dependent on a single population of neoplastic cells. These cells are presumed to be clonal – that is, they are derived from the same cell,
and all carry the same genetic or epigenetic anomaly – evident of clonality. For lymphoid neoplasms, e.g. lymphoma and leukemia, clonality is proven by the amplification of a single rearrangement of their immunoglobulin gene (for B cell lesions) or T cell receptor gene (for T cell lesions). The demonstration of clonality is now considered to be necessary to identify a lymphoid cell proliferation as neoplastic.
It is tempting to define neoplasms as clonal cellular proliferations but the demonstration of clonality is not always possible. Therefore, clonality is not required in the definition of neoplasia.
Complete surgical excision is the treatment of choice, associated with an excellent long term clinical outcome.
Carcinoma "in situ" is, by definition, a localized phenomenon, with no potential for metastasis unless it progresses into cancer. Therefore, its removal eliminates the risk of subsequent progression into a life-threatening condition.
Some forms of CIS (e.g., colon polyps and polypoid tumours of the bladder) can be removed using an endoscope, without conventional surgical resection. Dysplasia of the uterine cervix is removed by excision (cutting it out) or by burning with a laser. Bowen's disease of the skin is removed by excision. Other forms require major surgery, the best known being intraductal carcinoma of the breast (also treated with radiotherapy). One of the most dangerous forms of CIS is the "pneumonic form" of BAC of the lung, which can require extensive surgical removal of large parts of the lung. When too large, it often cannot be completely removed, with eventual disease progression and death of the patient.
A nerve sheath tumor is a type of tumor of the nervous system (nervous system neoplasm) which is made up primarily of the myelin surrounding nerves.
A peripheral nerve sheath tumor (PNST) is a nerve sheath tumor in the peripheral nervous system. Benign peripheral nerve sheath tumors include schwannomas and neurofibromas.
A malignant peripheral nerve sheath tumor (MPNST) is a cancerous peripheral nerve sheath tumor.
A nervous system neoplasm is a tumor affecting the nervous system. Types include:
- Nerve sheath tumor
- Brain tumor
- Arachnoid cyst
- Optic nerve glioma
Intraductal papillary mucinous neoplasms can come to clinical attention in a variety of different ways. The most common symptoms include abdominal pain, nausea and vomiting. The most common signs patients have when they come to medical attention include jaundice (a yellowing of the skin and eyes caused by obstruction of the bile duct), weight loss, and acute pancreatitis. These signs and symptoms are not specific for an intraductal papillary mucinous neoplasm, making it more difficult to establish a diagnosis. Doctors will therefore often order additional tests.
Once a doctor has reason to believe that a patient may have an intraductal papillary mucinous neoplasm, he or she can confirm that suspicion using one of a number of imaging techniques. These include computerized tomography (CT), endoscopic ultrasound (EUS), and magnetic resonance cholangiopancreatography (MRCP). These tests will reveal dilatation of the pancreatic duct or one of the branches of the pancreatic duct. In some cases a fine needle aspiration (FNA) biopsy can be obtained to confirm the diagnosis. Fine needle aspiration biopsy can be performed through an endoscope at the time of endoscopic ultrasound, or it can be performed through the skin using a needle guided by ultrasound or CT scanning.
IPMN forms cysts (small cavities or spaces) in the pancreas. These cysts are visible in CT scans (X-ray computed tomography). However, many pancreatic cysts are benign (see Pancreatic disease).
A growing number of patients are now being diagnosed before they develop symptoms (asymptomatic patients). In these cases, the lesion in the pancreas is discovered accidentally (by chance) when the patient is being scanned (i.e. undergoing an ultrasound, CT or MRI scan) for another reason. Up to 6% of patients undergoing pancreatic resection did so for treatment of incidental IPMNs.
In 2011, scientists at Johns Hopkins reported that they have developed a gene-based test that can be used to distinguish harmless from precancerous pancreatic cysts. The test may eventually help patients with harmless cysts avoid needless surgery. Bert Vogelstein and his colleagues discovered that almost all of the precancerous cysts (intraductal papillary mucinous neoplasms) of the pancreas have mutations in the KRAS and/or the GNAS gene. The researchers then tested a total of 132 intraductal papillary mucinous neoplasms for mutations in KRAS and GNAS. Nearly all (127) had mutations in GNAS, KRAS or both. Next, the investigators tested harmless cysts such as serous cystadenomas, and the harmless cysts did not have GNAS or KRAS mutations. Larger numbers of patients must be studied before the gene-based test can be widely offered.
Solid pseudopapillary tumours show positive nuclear staining for beta catenin, as well as positive immunostaining for CD10, CD56, vimentin, alpha 1-antitrypsin, and neuron specific enolase; they are negative for chromogranin and pancreatic enzymes.
It is important to separate hiberoma from adult rhabdomyoma, a granular cell tumor and a true liposarcoma.
Diagnosis of EIN lesions is of clinical importance because of the increased risk of coexisting (39% of women with EIN will be diagnosed with carcinoma within one year) or future (the long term endometrial cancer risk is 45 times greater for a woman with EIN compared to one with only a benign endometrial histology) endometrial cancer. Diagnostic terminology is that used by pathologists, physicians who diagnose human disease by examination of histologic preparations of excised tissues. Critical distinctions in EIN diagnosis are separation from benign conditions such as benign endometrial hyperplasia (a field effect in endometrial tissue caused by excessive stimulation by the hormone estrogen), and cancer.
The spectrum of disease which must be distinguished from EIN (Table II) includes benign endometrial hyperplasia and carcinoma:
Table II: Disease classes that need to be distinguished from EIN.
EIN may be diagnosed by a trained pathologist by examination of tissue sections of the endometrium. All of the following diagnostic criteria must be met in a single area of one tissue fragment to make the diagnosis (Table III).
Table III: EIN diagnosis.
Serous cystic neoplasms can come to clinical attention in a variety of ways. The most common symptoms are very non-specific and include abdominal pain, nausea and vomiting. In contrast to many of the other tumors of the pancreas, patients rarely develop jaundice (a yellowing of the skin and eyes caused by obstruction of the bile duct), or weight loss. These signs and symptoms are not specific for a serous cystic neoplasm, making it more difficult to establish a diagnosis. Doctors will therefore often order additional tests.
Once a doctor has reason to believe that a patient may have serous cystic neoplasm, he or she can confirm that suspicion using one of a number of imaging techniques. These include computerized tomography (CT), endoscopic ultrasound (EUS), and magnetic resonance cholangiopancreatography (MRCP). These tests will reveal a cystic mass within the pancreas. The cysts do not communicate with the larger pancreatic ducts. In some cases a fine needle aspiration (FNA) biopsy can be obtained to confirm the diagnosis. Fine needle aspiration biopsy can be performed through an endoscope at the time of endoscopic ultrasound, or it can be performed through the skin using a needle guided by ultrasound or CT scanning.
A growing number of patients are now being diagnosed before they develop symptoms (asymptomatic patients). In these cases, the lesion in the pancreas is discovered accidentally (by chance) when the patient is being scanned (x-rayed) for another reason.
A solid pseudopapillary tumour (also known as solid pseudopapillary neoplasm or, more formally, solid pseudopapillary tumour/neoplasm of the pancreas) is a low-grade malignant neoplasm of the pancreas of architecture that typically afflicts young women.
Clear cell ovarian tumors are part of the surface epithelial-stromal tumor group of ovarian cancers, accounting for 6% of these cancers. Clear cell tumors are also associated with the pancreas and salivary glands.
Benign and borderline variants of this neoplasm are rare, and most cases are malignant.
These tumors may have a worse prognosis than serous tumors.
The treatment of choice for main-duct IPMNs is resection due to approximately 50% chance of malignancy. Side-branch IPMNs are occasionally monitored with regular CT or MRIs, but most are eventually resected, with a 30% rate of malignancy in these resected tumors. Survival 5 years after resection of an IPMN without malignancy is approximately 80%, 85% with malignancy but no lymph node spread and 0% with malignancy spreading to lymph nodes. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy or robotic surgery. A study using Surveillance, Epidemiology, and End Result Registry (SEER) data suggested that increased lymph node counts harvested during the surgery were associated with better survival in invasive IPMN patients.