Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis of occupational asthma uses several techniques.
A non-specific bronchial hyperreactivity test can be used to help diagnose occupational asthma. It involves testing with methacholine, after which the forced expiratory volume in 1 second (FEV) of the patient is measured. This test is often used for measuring the intensity of a person's asthma and to confirm that the person needs to be treated for asthma.
Other non specific tests could require the patient to run for a few minutes at a continuous pace. In this case, the individual’s peak expiratory flow rate (PEFR) is measured, showing how fast a person can exhale. PEFR can also be measured at work to see if there is a difference from the PEFR in a controlled environment. Measuring PEFR at work is a highly reliable test for occupational asthma.
A skin prick test is usually performed on the inner forearm where a grid is marked and a drop of the allergens to be tested are placed on the arm in the grid. Once this has been done, the skin is pricked through the drop using a lancet. Reactions, if any, occur within 10 to 15 minutes and these results can then be analyzed.
Immunoglobulin E is an antibody found in human blood and is effective against toxins. Since it can also trigger allergic reactions to specific allergens like pollen, the IgE test is performed to evaluate whether the subject is allergic to these substances.
A spirometer is a device used to measure timed expired and inspired volumes, and can be used to help diagnose occupational asthma.
Specific inhalation challenges test for reactions to substances found in the workplace. One method is a whole body sealed chamber where the patient is exposed to articles that are present in their workplace. This method has the advantage of being able to assess, albeit highly subjectively, ocular and nasal symptoms as well as a reduction in FEV. Another test requires the patient to breathe aerosols of the suspected asthmagens through an oro-facial mask. These asthmagens are aerosolized using closed circuit chambers, and the quantities and concentrations administered are minute and extremely stable, to minimize the risk of exaggerated responses.
Prevention of occupational asthma can be accomplished through better education of workers, management, unions and medical professionals. This will enable them to identify the risk factors and put in place preventive measures, including respiratory protection and exposure limits.
Spirometry is recommended to aid in diagnosis and management. It is the single best test for asthma. If the FEV1 measured by this technique improves more than 12% and increases by at least 200 milliliters following administration of a bronchodilator such as salbutamol, this is supportive of the diagnosis. It however may be normal in those with a history of mild asthma, not currently acting up. As caffeine is a bronchodilator in people with asthma, the use of caffeine before a lung function test may interfere with the results. Single-breath diffusing capacity can help differentiate asthma from COPD. It is reasonable to perform spirometry every one or two years to follow how well a person's asthma is controlled.
The prognosis for asthma is generally good, especially for children with mild disease. Mortality has decreased over the last few decades due to better recognition and improvement in care. In 2010 the death rate was 170 per million for males and 90 per million for females. Rates vary between countries by 100 fold.
Globally it causes moderate or severe disability in 19.4 million people as of 2004 (16 million of which are in low and middle income countries). Of asthma diagnosed during childhood, half of cases will no longer carry the diagnosis after a decade. Airway remodeling is observed, but it is unknown whether these represent harmful or beneficial changes. Early treatment with corticosteroids seems to prevent or ameliorates a decline in lung function. Asthma in children also has negative effects on quality of life of their parents.
Flavorings-related lung disease can be prevented with the use of engineering controls (e.g. exhaust hoods or closed systems), personal protective equipment, monitoring of potentially affected workers, worker education, and by not using lung-disease-causing flavorings.
The diagnosis is based upon a history of symptoms after exposure to the allergen and clinical tests. A physician may take blood tests, seeking signs of inflammation, a chest X-ray and lung function tests. The sufferer shows a restrictive loss of lung function.
Precipitating IgG antibodies against fungal or avian antigens can be detected in the laboratory using the traditional Ouchterlony immunodiffusion method wherein 'precipitin' lines form on agar plate. The ImmunoCAP technology has replaced this time consuming, labor-intensive method with their automated CAP assays and FEIA (Fluorescence enzyme immunoassay) that can detect IgG antibodies against Aspergillus fumigatus (Farmer's lung or for ABPA) or avian antigens (Bird Fancier's Lung).
Although overlapping in many cases, hypersensitivity pneumonitis may be distinguished from occupational asthma in that it is not restricted to only occupational exposure, and that asthma generally is classified as a type I hypersensitivity. Unlike asthma, hypersensitivity pneumonitis targets lung alveoli rather than bronchi.
Lung biopsies can be diagnostic in cases of chronic hypersensitivity pneumonitis, or may help to suggest the diagnosis and trigger or intensify the search for an allergen. The main feature of chronic hypersensitivity pneumonitis on lung biopsies is expansion of the interstitium by lymphocytes accompanied by an occasional multinucleated giant cell or loose granuloma.
When fibrosis develops in chronic hypersensitivity pneumonitis, the differential diagnosis in lung biopsies includes the idiopathic interstitial pneumonias. This group of diseases includes usual interstitial pneumonia, non-specific interstitial pneumonia and cryptogenic organizing pneumonia, among others.
The prognosis of some idiopathic interstitial pneumonias, e.g. idiopathic usual interstitial pneumonia (i.e. idiopathic pulmonary fibrosis), are very poor and the treatments of little help. This contrasts the prognosis (and treatment) for hypersensitivity pneumonitis, which is generally fairly good if the allergen is identified and exposures to it significantly reduced or eliminated. Thus, a lung biopsy, in some cases, may make a decisive difference.
Culturing fungi from sputum is a supportive test in the diagnosis of ABPA, but is not 100% specific for ABPA as "A. fumigatus" is ubiquitous and commonly isolated from lung expectorant in other diseases. Nevertheless, between 40–60% of patients do have positive cultures depending on the number of samples taken.
The first stage involves exposing the skin to Aspergillus fumigatus antigens; an immediate reaction is hallmark of ABPA. The test should be performed first by skin prick testing, and if negative followed with an intradermal injection. Overall sensitivity of the procedure is around 90%, though up to 40% of asthmatic patients without ABPA can still show some sensitivity to Aspergillus antigens (a phenomenon likely linked to a less severe form of ABPA termed severe asthma with fungal sensitization (SAFS)).
Serum blood tests are an important marker of disease severity, and are also useful for the primary diagnosis of ABPA. When serum IgE is normal (and patients are not being treated by glucocorticoid medications), ABPA is excluded as the cause of symptoms. A raised IgE increases suspicion, though there is no universally accepted cut-off value. Values can be stated in international units (IU/mL) or ng/mL, where 1 IU is equal to 2.4 ng/mL. Since studies began documenting IgE levels in ABPA during the 1970s, various cut-offs between 833–1000 IU/mL have been employed to both exclude ABPA and to warrant further serological testing. Current consensus is that a cut-off of 1000 IU/mL should be employed, as lower values are encountered in SAFS and asthmatic sensitization.
IgG antibody precipitin testing from serum is useful, as positive results are found in between 69–90% of patients, though also in 10% of asthmatics with and without SAFS. Therefore, it must be used in conjunction with other tests. Various forms exist, including enzyme-linked immunosorbent assay (ELISA) and fluorescent enzyme immunoassay (FEIA). Both are more sensitive than conventional counterimmunoelectrophoresis. IgG may not be entirely specific for ABPA, as high levels are also found in chronic pulmonary aspergillosis (CPA) alongside more severe radiological findings.
Until recently, peripheral eosinophilia (high eosinophil counts) was considered partly indicative of ABPA. More recent studies show that only 40% of ABPA sufferers present with eosinophilia, and hence a low eosinophil count does not necessary exclude ABPA; for example patients undergoing steroid therapy have lower eosinophil counts.
The International Olympic Committee recommends the eucapnic voluntary hyperventilation (EVH) challenge as the test to document exercise-induced asthma in Olympic athletes. In the EVH challenge, the patient voluntarily, without exercising, rapidly breathes dry air enriched with 5% for six minutes. The presence of the enriched compensates for the losses in the expired air, not matched by metabolic production, that occurs during hyperventilation, and so maintains levels at normal.
Urinary cystyl-leukotriene or urinary LTE4 can be used after a supervised challenge with aspirin. In aspirin sensitivity, no change in N-methylhistamine is observed; while LTE4 levels are increased. This test however lacks sensitivity and has a 25 percent false negative rate among affected persons.
Berylliosis is an occupational disease. Relevant occupations are those where beryllium is mined, processed or converted into metal alloys, or where machining of metals containing beryllium and recycling of scrap alloys occurs. It is associated with aerospace manufacturing, microwave semiconductor electronics, beryllium mining or manufacturing of fluorescent light bulbs (which once contained beryllium compounds in their internal phosphor coating). Beryllia was used in lamp manufacture because of ceramic's obvious virtues for insulation and heat resistance, and also because beryllia could be made transparent. Certain welding anodes along with other electrical contacts and even non-sparking tools are made of beryllium copper alloy and the subsequent machining of such materials would cause the disease as well.
Owners often notice their cat coughing several times per day. Cat coughing sounds different from human coughing, usually sounding more like the cat is passing a hairball. Veterinarians will classify the severity of feline asthma based on the medical signs. There are a number of diseases that are very closely related to feline asthma which must be ruled out before asthma can be diagnosed. Lungworms, heartworms, upper and lower respiratory infections, lung cancer, cardiomyopathy and lymphocytic plasmacytic stomatitis all mimic asthmatic symptoms. Medical signs, pulmonary radiographs, and a positive response to steroids help confirm the diagnosis.
While radiographs can be helpful for diagnosis, airway sampling through transtracheal wash or bronchoalveolar lavage is often necessary. More recently, computed tomography has been found to be more readily available and accurate in distinguishing feline tracheobronchitis from bronchopneumonia.
Feline asthma and other respiratory diseases may be prevented by cat owners by eliminating as many allergens as possible. Allergens that can be found in a cat’s habitual environment include: pollen, molds, dust from cat litter, perfumes, room fresheners, carpet deodorizers, hairspray, aerosol cleaners, cigarette smoke, and some foods. Avoid using cat litters that create lots of dust, scented cat litters or litter additives. Of course eliminating all of these can be very difficult and unnecessary, especially since a cat is only affected by one or two. It can be very challenging to find the allergen that is creating asthmatic symptoms in a particular cat and requires a lot of work on both the owner’s and the veterinarian's part. But just like any disease, the severity of an asthma attack can be propelled by more than just the allergens, common factors include: obesity, stress, parasites and pre-existing heart conditions. Dry air encourages asthma attacks so keep a good humidifier going especially during winter months.
The differential diagnosis for berylliosis includes:
- Sarcoidosis
- Granulomatous lung diseases
- Tuberculosis
- Fungal infections
- Granulomatosis with polyangiitis
- Idiopathic pulmonary fibrosis
- Hypersensitivity pneumonitis
- Asthma
Of these possibilities, berylliosis presents most similarly to sarcoidosis. Some studies suggest that up to 6% of all cases of sarcoidosis are actually berylliosis.
Definitive diagnosis of berylliosis is based on history of beryllium exposures, documented beryllium sensitivity and granulomatous inflammation on lung biopsy. Given the invasive nature of a lung biopsy diagnosis can also be based on clinical history consistent with berylliosis, abnormal chest x-ray or CT scan findings, an abnormalities in pulmonary function tests.
Establishing beryllium sensitivity is the first step in diagnosis. The beryllium lymphocyte proliferation test (BeLPT) is the standard way of determining sensitivity to beryllium. The test is performed by acquiring either, peripheral blood or fluid from a bronchial alveolar lavage, and lymphocytes are cultured with beryllium sulfate. Cells are then counted and those with elevated number of cells are considered abnormal. Those exposed persons with two abnormal BeLPT tested with peripheral blood, or one abnormal and one borderline result, are considered beryllium sensitized. Also, those with one abnormal BeLPT tested with fluid from a bronchial alveolar lavage are considered sensitized.
Chest radiography findings of berylliosis are non-specific. Early in the disease radiography findings are usually normal. In later stages interstitial fibrosis, pleural irregularities, hilar lymphadenopathy and ground-glass opacities have been reported. Findings on CT are also not specific to berylliosis. Findings that are common in CT scans of people with berylliosis include parenchymal nodules in early stages. One study found that ground-glass opacities were more commonly seen on CT scan in berylliosis than in sarcoidosis. In later stages hilar lymphadenopathy, intersitial pulmonary fibrosis and pleural thickening.
Diagnosis of alcohol-induced respiratory symptoms can be strongly suggested on the bases of survey questionnaires. Questionnaires can be devised to determine the specific types of alcoholic beverages eliciting reactions; reactions evoked by one or only a few but not other types of alcoholic beverage, particularly when the offending beverage(s) is wine and/or beer, suggest that the reactions are due to classical allergic reaction to allergens in the beverage; reactions to all or most types of alcoholic beverages favors a genetic (i.e. acetaldehyde-induce) basis. Further differentiation between these two causes can be tested under medical supervision be determining if ingestion of a water-diluted pure ethanol solution elicits reactions or if an offending alcoholic beverage but not the same beverage without ethanol elicits reactions. Either result would favor an acetaldehyde-induced genetic basis for the reaction.
Diagnosis of alcohol sensitivity due to the accumulation of acetaldehyde in individuals bearing the glu487lys ALDH2 allele can be made by measuring the diameter of the erythema (i.e. red) area developing under a 15 millimeter skin patch plaster soaked in 70% ethanol and applied for 48 hours (ethanol patch test); erythema of 15 millimeters is considered positive with a false positive ratio ([100 x {number of individuals with a positive patch test}]/{number of individuals with a normal ALDH2 genotype}) of 5.9% and a false negative ratio ([100 x {number of individuals with a negative patch test}]/{number of individuals with a glu487lys ALDH2 allele}) of 0%. To resolve ambiguities in or replace the ethanol patch test for other reasons, a polymerase chain reaction using special primers and conditions can be used to directly detect the glu487lys ALDH2 genes. For other causes of acetaldehyde-induced alcohol sensitivities, the ethanol patch test will need to be tested for verification of its acetaldehyde basis and appropriate polymerase chain reactions will likewise be needed to verify a genetic basis for symptoms.
Diagnosis of alcohol sensitivity due to allergic reactivity to the allergens in alcoholic beverages can be confirmed by standard skin prick tests, skin patch tests, blood tests, challenge tests, and challenge/elimination tests as conducted for determining the allergen causing other classical allergic reactions (see allergy and Skin allergy tests.)
Field-exercise challenge tests that involve the athlete performing the sport in which they are normally involved and assessing FEV after exercise are helpful if abnormal but have been shown to be less sensitive than eucapnic voluntary hyperventilation.
Bronchiolitis obliterans is often misdiagnosed as asthma, chronic bronchitis, emphysema or pneumonia.
Several tests are often needed to correctly diagnose bronchiolitis obliterans, including chest X-rays, diffusing capacity of the lung tests (DLCO), spirometry, lung volume tests, high-resolution CT (HRCT), and lung biopsy. Diffusing capacity of the lung (DLCO) tests are usually normal; people with early-stage BO are more likely to have normal DLCO. Spirometry tests usually show fixed airway obstructions and sometimes restriction, where the lungs can't expand fully. Lung volume tests may show hyperinflation (excessive air in lungs caused by air trapping). HRCT can also show air trapping when the person being scanned breathes out completely; it can also show thickening in the airway and haziness in the lungs. Transthoracic lung biopsies are preferable for diagnosis of constrictive BO compared to transbronchial biopsies; regardless of the type of biopsy, a diagnosis may only be achieved by examination of multiple samples.
Some people have reported relief of symptoms by following a low-salicylate diet such as the Feingold diet. Aspirin is quickly converted in the body to salicylic acid, also known as 2-Hydroxybenzoic acid. Sommer "et al." reported a multi-center prospective randomized cross-over trial with 30 patients following a low-salicylate diet for 6 weeks. This study demonstrated a clinically significant decrease in both subjective and objective scoring of severity of disease, but made note of the challenge for patients in following what is a fairly stringent diet.
A diet low in omega-6 oils (precursors of arachidonic acid), and high in omega-3 oils, may also help. In a small study, aspirin-sensitive asthma patients taking 10 grams of fish oil daily reported relief of most symptoms after six weeks, however symptoms returned if the supplement was stopped.
In addition to any issues of treatment compliance, and maximised corticosteroids (inhaled or oral) and beta agonist, brittle asthma treatment also involves for type 1 additional subcutaneous injections of beta2 agonist and inhalation of long acting beta-adrenoceptor agonist, whilst type 2 needs allergen avoidance and self-management approaches. Since catastrophic attacks are unpredictable in type 2, patients may display identification of the issue, such as a MedicAlert bracelet, and carry an epinephrine autoinjector.
Avoidance of ethanol is the safest, surest, and cheapest treatment. Indeed, surveys find a positive correlation between high incidences of glu487lys ALDH2 allele-related alcohol-induced respiratory reactions as well as other causes of these reactions and low levels of alcohol consumption, alcoholism, and alcohol-related diseases. Evidently, people suffering these reaction self-impose avoidance behavior. There is a proviso here: ethanol, at surprisingly high concentrations, is used as a solvent to dissolve many types of medicines and other ingredients. This pertains particularly to liquid cold medicines and mouthwashes. Ethanol avoidance includes avoiding the ingestion of and, depending on an individual's history, mouth washing with, such agents.
Type H1 antagonists in the histamine antagonist family of drugs were tested in Japanese volunteers with alcohol-induced asthma (who presumably have glu487lys ALDH2 allele-associated asthma) and found to be completely effective in blocking bronchoconstriction responses to alcoholic beverages; these blockers, it is suggested, may be taken 1–2 hours before consumption of alcohol beverages as a preventative of alcohol-induced respiratory reactions. In the absence of specific studies on the prevention of classical alcohol induced rhinitis and asthma due to allergens in alcoholic beverages, see asthma section on Prevention and rhinitis section on Prevention of allergen-induced reactions.
In the absence of specific studies on the treatment of acute alcohol-induced bronchoconstriction and rhinitis, treatment guidelines should probably follow those of their comparable allergen-induced classical allergic reactions (see asthma section on Treatment and rhinitis section on Treatment) but possibly favoring the testing of H1 antagonist anti-histamines as part of the initial protocol.
Status asthmaticus is slightly more common in males and is more common among people of African and Hispanic origin. The gene locus glutathione dependent S-nitrosoglutathione (GSNOR) has been suggested as one possible correlation to development of status asthmaticus.
BFL symptoms improve in the absence of the bird proteins which caused the disease. Therefore, it is advisable to remove all birds, bedding and pillows containing feathers from the house as well as washing all soft furnishings, walls, ceilings and furniture. Certain small mammals kept as pets have the same or similar proteins in their fur and feces and so should be removed. Peak flow measurements will indicate a lung condition however a spirometric test on lung capacity and patients ability to move air in and out of the lungs plus in more advanced cases an X-ray test or CT scan is available to confirm whether someone has the disease or not. Steroid inhalers similar to those used for asthma are effective or in cases where the patient finds inhaling difficult high dosages of steroids combined with bone density protecting drugs are used to treat a person with BFL, reducing the inflammation and hopefully preventing scarring. Recovery varies from patient to patient depending on what stage the condition was at when the patient consulted the doctor, the speed of diagnosis and application of the appropriate treatment to prevent residual damage to the lungs and many make a full recovery. However, BFL may reoccur when in contact with birds or other allergens.
Interventions include intravenous (IV) medications (e.g. magnesium sulfate), aerosolized medications to dilate the airways (bronchodilation) (e.g., albuterol or ipratropium bromide/salbutamol), and positive-pressure therapy, including mechanical ventilation. Multiple therapies may be used simultaneously to rapidly reverse the effects of status asthmaticus and reduce permanent damage of the airways. Intravenous corticosteroids and methylxanthines are often given. If the person with a severe asthma exacerbation is on a mechanical ventilator, certain sedating medications such as ketamine or propofol, have bronchodilating properties. According to a new randomized control trial ketamine and aminophylline are also effective in children with acute asthma who responds poorly to standard therapy.
A CT scan of the lungs and histopathology along with a history of working in the flocking industry can diagnose flock worker's lung. A differential diagnosis may also include Sjögren's syndrome and lymphoid interstitial pneumonia. Flock worker's lung may be misdiagnosed as asthma or recurrent pneumonia. Though X-rays may be abnormal, CT scans are more useful as a diagnostic tool in flock worker's lung. Other diagnostic methods may include a transbronchial biopsy or wedge biopsy.