Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Formal criteria for diagnosis of OHS are:
- Body mass index over 30 kg/m (a measure of obesity, obtained by taking one's weight in kilograms and dividing it by one's height in meters squared)
- Arterial carbon dioxide level over 45 mmHg or 6.0 kPa as determined by arterial blood gas measurement
- No alternative explanation for hypoventilation, such as use of narcotics, severe obstructive or interstitial lung disease, severe chest wall disorders such as kyphoscoliosis, severe hypothyroidism (underactive thyroid), neuromuscular disease or congenital central hypoventilation syndrome
If OHS is suspected, various tests are required for its confirmation. The most important initial test is the demonstration of elevated carbon dioxide in the blood. This requires an arterial blood gas determination, which involves taking a blood sample from an artery, usually the radial artery. Given that it would be complicated to perform this test on every patient with sleep-related breathing problems, some suggest that measuring bicarbonate levels in normal (venous) blood would be a reasonable screening test. If this is elevated (27 mmol/l or higher), blood gasses should be measured.
To distinguish various subtypes, polysomnography is required. This usually requires brief admission to a hospital with a specialized sleep medicine department where a number of different measurements are conducted while the subject is asleep; this includes electroencephalography (electronic registration of electrical activity in the brain), electrocardiography (same for electrical activity in the heart), pulse oximetry (measurement of oxygen levels) and often other modalities. Blood tests are also recommended for the identification of hypothyroidism and polycythemia.
To distinguish between OHS and various other lung diseases that can cause similar symptoms, medical imaging of the lungs (such as a chest X-ray or CT/CAT scan), spirometry, electrocardiography and echocardiography may be performed. Echo- and electrocardiography may also show strain on the right side of the heart caused by OHS, and spirometry may show a restrictive pattern related to obesity.
Obesity hypoventilation syndrome is associated with a reduced quality of life, and people with the condition incur increased healthcare costs, largely due to hospital admissions including observation and treatment on intensive care units. OHS often occurs together with several other disabling medical conditions, such as asthma (in 18–24%) and type 2 diabetes (in 30–32%). Its main complication of heart failure affects 21–32% of patients.
Those with abnormalities severe enough to warrant treatment have an increased risk of death reported to be 23% over 18 months and 46% over 50 months. This risk is reduced to less than 10% in those receiving treatment with PAP. Treatment also reduces the need for hospital admissions and reduces healthcare costs.
People generally require tracheostomy and lifetime mechanical ventilation on a ventilator in order to survive. However, it has now been shown that biphasic cuirass ventilation can effectively be used without the need for a tracheotomy. Other potential treatments for Ondine's curse include oxygen therapy and medicine for stimulating the respiratory system. Currently, problems arise with the extended use of ventilators, including fatal infections and pneumonia.
Most people with CCHS (unless they have the Late Onset form) do not survive infancy, unless they receive ventilatory assistance during sleep. An alternative to a mechanical ventilator is diaphragm pacing.
The hypercapnic state is routinely used to calibrate blood-oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), a modality that is sensitive to changes in blood oxygenation. However, this calibration crucially relies on the assumption that hypercapnia has no effect on neuronal function, which is a matter of debate.
Children with CCHS develop life-threatening episodes of apnea with cyanosis, usually in the first months of life. Medical evaluation excludes lesions of the brain, heart, and lungs but demonstrates impaired responses to build-up of carbon dioxide (hypercapnia) and decreases of oxygen in the circulation (hypoxia), the two strongest stimuli to increase breathing rate.
Polysomnography shows that hypoventilation is most marked during slow-wave sleep. In the most severe cases, hypoventilation is present during other nonrapid eye movement sleep stages and even wakefulness. A subset of CCHS patients are at very high risk for developing malignant neural crest-derived tumors, such as neuroblastoma.
The sequence of "PHOX2B" reveals mutations in 91% of the cases.
As in many disorders that are very rare, an infant with this unusual form of sleep apnea suffers from the probability that their physician has most likely never seen another case and will not recognize the diagnosis. In some locations, such as France, optimal management of patients, once identified, has been aided by the creation of a national registry and the formation of a network of centers.
Let us consider some scenarios where there is a defect in ventilation and/ or perfusion of the lungs.
In condition such as pulmonary embolism, the pulmonary blood flow is affected, thus the ventilation of the lung is adequate, however there is a perfusion defect with defect in blood flow. Gas exchange thus becomes highly inefficient leading to hypoxemia as measured by arterial oxygenation. A ventilation perfusion scan or lung scintigraphy shows some areas of lungs being ventilated but not adequately perfused. This also leads to a high A-a gradient which is not responsive to oxygen
In conditions with right to left shunts, there is again a ventilation perfusion defect with high A-a gradient. However, the A-a gradient is responsive to oxygen therapy. In cases of right to left shunts more of deoxygenated blood mixes with oxygenated blood from the lungs and thus to a small extent the condition might neutralize the high A-a gradient with pure oxygen therapy.
Patient with parenchymal lung diseases will have an increased A-a gradient with moderate response to oxygen therapy.
A patient with hypoventilation will have complete response to 100% oxygen therapy
Currently there are no official tests or treatments for ROHHAD. Each child has the symptoms above at different ages, yet most symptoms are eventually present. Many children are misdiagnosed or are never diagnosed until alveolar hypoventilation occurs.
People with neuromuscular disorders or hypoventilation syndromes involving failed respiratory drive experience central hypoventilation. The most common treatment for this form is the use of non-invasive ventilation such as a BPAP machine.
In closed circuit SCUBA (rebreather) diving, exhaled carbon dioxide must be removed from the breathing system, usually by a scrubber containing a solid chemical compound with a high affinity for CO, such as soda lime. If not removed from the system, it may be re-inhaled, causing an increase in the inhaled concentration.
One treatment for obstructive hypopnea is continuous positive airway pressure (CPAP). CPAP is a treatment in which the patient wears a mask over the nose and/or mouth. An air blower forces air through the upper airway. The air pressure is adjusted so that it is just enough to maintain the oxygen saturation levels in the blood. Another treatment is sometimes a custom fitted oral appliance. The American Academy of Sleep Medicine's protocol for obstructive sleep apnea (OSA) recommends oral appliances for those who prefer them to CPAP and have mild to moderate sleep apnea or those that do not respond to/cannot wear a CPAP. Severe cases of OSA may be treated with an oral appliance if the patient has had a trial run with a CPAP. Oral Appliances should be custom made by a dentist with training in dental sleep medicine. Mild obstructive hypopnea can often be treated by losing weight or by avoiding sleeping on one's back. Also quitting smoking, and avoiding alcohol, sedatives and hypnotics (soporifics) before sleep can be quite effective. Surgery is generally a last resort in hypopnea treatment, but is a site-specific option for the upper airway. Depending on the cause of obstruction, surgery may focus on the soft palate, the uvula, tonsils, adenoids or the tongue. There are also more complex surgeries that are performed with the adjustment of other bone structures - the mouth, nose and facial bones.
Treatment of the underlying cause is required. Endotracheal intubation and mechanical ventilation are required in cases of severe respiratory failure (PaO2 less than 50 mmHg). Respiratory stimulants such as doxapram are rarely used, and if the respiratory failure resulted from an overdose of sedative drugs such as opioids or benzodiazepines, then the appropriate antidote (naloxone or flumazenil, respectively) will be given.
There is tentative evidence that in those with respiratory failure identified before arrival in hospital, continuous positive airway pressure can be useful when started before conveying to hospital.
Respiratory stimulants such as nikethamide were traditionally used to counteract respiratory depression from CNS depressant overdose, but offered limited effectiveness. A new respiratory stimulant drug called BIMU8 is being investigated which seems to be significantly more effective and may be useful for counteracting the respiratory depression produced by opiates and similar drugs without offsetting their therapeutic effects.
If the respiratory depression occurs from opioid overdose, usually an opioid antagonist, most likely naloxone, will be administered. This will rapidly reverse the respiratory depression unless complicated by other depressants. However an opioid antagonist may also precipitate an opioid withdrawal syndrome in chronic users.
Disorders like congenital central hypoventilation syndrome (CCHS) and ROHHAD (rapid-onset obesity, hypothalamic dysfunction, hypoventilation, with autonomic dysregulation) are recognized as conditions that are associated with hypoventilation. CCHS may be a significant factor in some cases of sudden infant death syndrome (SIDS), often termed "cot death" or "crib death".
The opposite condition is hyperventilation (too much ventilation), resulting in low carbon dioxide levels (hypocapnia), rather than hypercapnia.
Ventilation Perfusion mismatch or "V/Q defects" are defects in total lung ventilation perfusion ratio. It is a condition in which one or more areas of the lung receive oxygen but no blood flow, or they receive blood flow but no oxygen due to some diseases and disorders.
The V/Q ratio of a healthy lung is approximately equal to 0.8, as normal lungs are not perfectly matched., which means the rate of alveolar ventilation to the rate of pulmonary blood flow is roughly equal.
The ventilation perfusion ratio can be measured by measuring the A-a gradient i.e. the alveolar-arterial gradient.
In renal compensation, plasma bicarbonate rises 3.5 mEq/L for each increase of 10 mm Hg in "Pa"CO. The expected change in serum bicarbonate concentration in respiratory acidosis can be estimated as follows:
- Acute respiratory acidosis: HCO increases 1 mEq/L for each 10 mm Hg rise in "Pa"CO.
- Chronic respiratory acidosis: HCO rises 3.5 mEq/L for each 10 mm Hg rise in "Pa"CO.
The expected change in pH with respiratory acidosis can be estimated with the following equations:
- Acute respiratory acidosis: Change in pH = 0.008 X (40 − "Pa"CO)
- Chronic respiratory acidosis: Change in pH = 0.003 X (40 − "Pa"CO)
Respiratory acidosis does not have a great effect on electrolyte levels. Some small effects occur on calcium and potassium levels. Acidosis decreases binding of calcium to albumin and tends to increase serum ionized calcium levels. In addition, acidemia causes an extracellular shift of potassium, but respiratory acidosis rarely causes clinically significant hyperkalemia.
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide or both cannot be kept at normal levels. A drop in the oxygen carried in blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type I or Type II, based on whether there is a high carbon dioxide level. The definition of respiratory failure in clinical trials usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.
The normal partial pressure reference values are: oxygen PaO more than , and carbon dioxide PaCO lesser than .
Respiratory acidosis can be acute or chronic.
- In "acute respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range (over 6.3 kPa or 45 mm Hg) with an accompanying acidemia (pH <7.36).
- In "chronic respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range, with a normal blood pH (7.35 to 7.45) or near-normal pH secondary to renal compensation and an elevated serum bicarbonate (HCO >30 mm Hg).
Central hypoventilation syndrome is a heterogeneous group of seemingly overlapping diseases. Paired-like homeobox 2B (PHOX2B) was confirmed in 2009 as the disease-causing gene in patients with congenital central hypoventilation syndrome (CCHS), a condition present in newborns. This genetic mutation is not present though in those with late-onset central hypoventilation syndrome and hypothalamic dysfunction.
Perinatal asphyxia is the medical condition resulting from deprivation of oxygen (hypoxia) to a newborn infant long enough to cause apparent harm. It results most commonly from a drop in maternal blood pressure or interference during delivery with blood flow to the infant's brain. This can occur as a result of inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There are various ways of measuring abdominal obesity including:
- Absolute waist circumference (> in men and > in women)
- Waist–hip ratio (the circumference of the waist divided by that of the hips of >0.9 for men and >0.85 for women)
- Waist-to-height ratio
- Sagittal Abdominal Diameter
In those with a BMI under 35, intra-abdominal body fat is related to negative health outcomes independent of total body fat. Intra-abdominal or visceral fat has a particularly strong correlation with cardiovascular disease.
BMI and waist measurements are well recognized ways to characterize obesity. However, waist measurements are not as accurate as BMI measurements. For this reason, it is recommended to use both methods of measurements.
While central obesity can be obvious just by looking at the naked body (see the picture), the severity of central obesity is determined by taking waist and hip measurements. The absolute waist circumference in men and in women) and the waist-hip ratio (>0.9 for men and >0.85 for women) are both used as measures of central obesity. A differential diagnosis includes distinguishing central obesity from ascites and intestinal bloating. In the cohort of 15,000 people participating in the National Health and Nutrition Examination Survey (NHANES III), waist circumference explained obesity-related health risk better than the body mass index (or BMI) when metabolic syndrome was taken as an outcome measure and this difference was statistically significant. In other words, excessive waist circumference appears to be more of a risk factor for metabolic syndrome than BMI. Another measure of central obesity which has shown superiority to BMI in predicting cardiovascular disease risk is the Index of Central Obesity (waist-to-height ratio - WHtR), where a ratio of >=0.5 (i.e. a waist circumference at least half of the individual's height) is predictive of increased risk.
Another diagnosis of obesity is the analysis of intra-abdominal fat having the most risk to one's personal health. The increased amount of fat in this region relates to the higher levels of plasma lipid and lipoproteins as per studies mentioned by Eric Poehlman (1998) review.
An increasing acceptance of the importance of central obesity within the medical profession as an indicator of health risk has led to new developments in obesity diagnosis such as the Body Volume Index, which measures central obesity by measuring a person's body shape and their weight distribution. The effect of abdominal adiposity occurs not just in those who are obese, but also affects people who are non-obese and it also contributes to insulin sensitivity
The term "non-syndromic obesity" is sometimes used to exclude these conditions. In people with early-onset severe obesity (defined by an onset before 10 years of age and body mass index over three standard deviations above normal), 7% harbor a single locus mutation.
The International Diabetes Federation consensus worldwide definition of the metabolic syndrome (2006) is:
Central obesity (defined as waist circumference with ethnicity-specific values) AND any two of the following:
- Raised triglycerides: > 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality
- Reduced HDL cholesterol: < 40 mg/dL (1.03 mmol/L) in males, < 50 mg/dL (1.29 mmol/L) in females, or specific treatment for this lipid abnormality
- Raised blood pressure (BP): systolic BP > 130 or diastolic BP >85 mm Hg, or treatment of previously diagnosed hypertension
- Raised fasting plasma glucose (FPG): >100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes
If FPG is >5.6 mmol/L or 100 mg/dL, an oral glucose tolerance test is strongly recommended, but is not necessary to define presence of the syndrome.
Pregnant women who ate more sweets, such as candy and processed juices, in early pregnancy were at higher risk of gaining excessive weight. A healthy, well-balanced diet during pregnancy can also help to minimize some pregnancy symptoms such as nausea and constipation.
The World Health Organization 1999 criteria require the presence of any one of diabetes mellitus, impaired glucose tolerance, impaired fasting glucose or insulin resistance, AND two of the following:
- Blood pressure: ≥ 140/90 mmHg
- Dyslipidemia: triglycerides (TG): ≥ 1.695 mmol/L and high-density lipoprotein cholesterol (HDL-C) ≤ 0.9 mmol/L (male), ≤ 1.0 mmol/L (female)
- Central obesity: waist:hip ratio > 0.90 (male); > 0.85 (female), or body mass index > 30 kg/m
- Microalbuminuria: urinary albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g
Index of Central Obesity (ICO) is the ratio of waist circumference and height first proposed by a Parikh "et al." in 2007 as a better substitute to the widely used waist circumference in defining metabolic syndrome. The National Cholesterol Education Program Adult Treatment Panel III suggested cut off of and for males and females as a marker of central obesity. The same was used in defining metabolic syndrome. Misra et al. suggested that these cutoffs are not applicable among Indians and the cutoffs be lowered to and for males and females. Various race specific cutoffs were suggested by different groups. The International Diabetes Federation defined central obesity based on these various race and gender specific cutoffs. The other limitation of waist circumference is that it can not be applied in children.
Parikh et al. looked at the average heights of various races and suggested that by using ICO various race- and gender-specific cutoffs of waist circumference can be discarded. An ICO cutoff of 0.5 was suggested as a criterion to define central obesity. Parikh "et al." further tested a modified definition of metabolic syndrome in which waist circumference was replaced with ICO in the National Health and Nutrition Examination Survey (NHANES) database and found the modified definition to be more specific and sensitive.
This parameter has been used in the study of metabolic syndrome and cardiovascular disease.