Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
On 9 May 2014, the UK National Screening Committee (UK NSC) announced its recommendation to screen every newborn baby in the UK for four further genetic disorders as part of its NHS Newborn Blood Spot Screening programme, including maple syrup urine disease.
Newborn screening for maple syrup urine disease involves analyzing the blood of 1–2 day-old newborns through tandem mass spectrometry. The blood concentration of leucine and isoleucine is measured relative to other amino acids to determine if the newborn has a high level of branched-chain amino acids. Once the newborn is 2–3 days old the blood concentration of branched-chain amino acids like leucine is greater than 1000 µmol/L and alternative screening methods are used. Instead, the newborn’s urine is analyzed for levels of branched-chain alpha-hydroxyacids and alpha-ketoacids.
There are no methods for preventing the manifestation of the pathology of MSUD in infants with two defective copies of the BCKD gene. However, genetic counselors may consult with couples to screen for the disease via DNA testing. DNA testing is also available to identify the disease in an unborn child in the womb.
Dozens of congenital metabolic diseases are now detectable by newborn screening tests, especially the expanded testing using mass spectrometry. This is an increasingly common way for the diagnosis to be made and sometimes results in earlier treatment and a better outcome. There is a revolutionary Gas chromatography–mass spectrometry-based technology with an integrated analytics system, which has now made it possible to test a newborn for over 100 mm genetic metabolic disorders.
Because of the multiplicity of conditions, many different diagnostic tests are used for screening. An abnormal result is often followed by a subsequent "definitive test" to confirm the suspected diagnosis.
Common screening tests used in the last sixty years:
- Ferric chloride test (turned colors in reaction to various abnormal metabolites in urine)
- Ninhydrin paper chromatography (detected abnormal amino acid patterns)
- Guthrie bacterial inhibition assay (detected a few amino acids in excessive amounts in blood) The dried blood spot can be used for multianalyte testing using Tandem Mass Spectrometry (MS/MS). This given an indication for a disorder. The same has to be further confirmed by enzyme assays, IEX-Ninhydrin, GC/MS or DNA Testing.
- Quantitative measurement of amino acids in plasma and urine
- IEX-Ninhydrin post column derivitization liquid ion-exchange chromatography (detected abnormal amino acid patterns and quantitative analysis)
- Urine organic acid analysis by gas chromatography–mass spectrometry
- Plasma acylcarnitines analysis by mass spectrometry
- Urine purines and pyrimidines analysis by gas chromatography-mass spectrometry
Specific diagnostic tests (or focused screening for a small set of disorders):
- Tissue biopsy or necropsy: liver, muscle, brain, bone marrow
- Skin biopsy and fibroblast cultivation for specific enzyme testing
- Specific DNA testing
A 2015 review reported that even with all these diagnostic tests, there are cases when "biochemical testing, gene sequencing, and enzymatic testing can neither confirm nor rule out an IEM, resulting in the need to rely on the patient's clinical course."
The concentration of ketone bodies may vary depending on diet, exercise, degree of metabolic adaptation and genetic factors. Ketosis can be induced when a ketogenic diet is followed for more than 3 days. This induced ketosis is sometimes called nutritional ketosis. This table shows the concentrations typically seen under different conditions
Note that urine measurements may not reflect blood concentrations. Urine concentrations are lower with greater hydration, and after adaptation to a ketogenic diet the amount lost in the urine may drop while the metabolism remains ketotic. Most urine strips only measure acetoacetate, while when ketosis is more severe the predominant ketone body is β-hydroxybutyrate. Unlike glucose, ketones are excreted into urine at any blood level. Ketoacidosis is a metabolic derangement that cannot occur in a healthy individual who can produce insulin, and should not be confused with physiologic ketosis.
Some clinicians regard eliminating carbohydrates as unhealthy and dangerous. However, it is not necessary to eliminate carbohydrates from the diet completely to achieve ketosis. Other clinicians regard ketosis as a safe biochemical process that occurs during the fat-burning state. Ketosis, which is accompanied by gluconeogenesis (the creation of glucose de novo from pyruvate), is the specific state that concerns some clinicians. However, it is unlikely for a normally functioning person to reach life-threatening levels of ketosis, defined as serum beta-hydroxybutyrate (B-OHB) levels above 15 millimolar (mM) compared to ketogenic diets among non diabetics, which "rarely run serum B-OHB levels above 3 mM." This is avoided with proper basal secretion of pancreatic insulin. People who are unable to secrete basal insulin, such as type 1 diabetics and long-term type II diabetics, are liable to enter an unsafe level of ketosis, eventually resulting in a coma that requires emergency medical treatment. The anti-ketosis conclusions have been challenged by a number of doctors and advocates of low-carbohydrate diets, who dispute assertions that the body has a preference for glucose and that there are dangers associated with ketosis.
Metabolic disorder screening can be done in newborns via the following methods:
- Blood test
- Skin test
- Hearing test
In terms of the diagnosis for glycogen storage disease type III, the following tests/exams are carried out to determine if the individual has the condition:
- Biopsy (muscle or liver)
- CBC
- Ultrasound
- DNA mutation analysis (helps ascertain GSD III subtype)
The differential diagnosis of glycogen storage disease type III includes GSD I, GSD IX and GSD VI. This however does not mean other glycogen storage diseases should not be distinguished as well.
The diagnosis is based on a combination of typical clinical features and exclusion by a pediatric endocrinologist of other causes of "hypoglycemia with ketosis," especially growth hormone deficiency, hypopituitarism, adrenal insufficiency, and identifiable inborn errors of metabolism such as organic acidoses.
The most useful diagnostic tests include measurement of insulin, growth hormone, cortisol, and lactic acid at the time of the hypoglycemia. Plasma acylcarnitine levels and urine organic acids exclude some of the important metabolic diseases. When the episodes are recurrent or severe, the definitive test is a hospitalization for a supervised diagnostic fast. This usually demonstrates "accelerated fasting"—a shorter time until the glucose begins to fall, but normal metabolic and counterregulatory responses as the glucose falls. As the glucose reaches hypoglycemic levels, the insulin is undetectable, counterregulatory hormones, fatty acids, and ketones are high, and glucagon injection elicits no rise of glucose.
Novel zinc biomarkers, such as the erythrocyte LA:DGLA ratio, have shown promise in pre-clinical and clinical trials and are being developed to more accurately detect dietary zinc deficiency.
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
In the US, the Dietary Reference Intake for adults is 55 µg/day. In the UK it is 75 µg/day for adult males and 60 µg/day for adult females. 55 µg/day recommendation is based on full expression of plasma glutathione peroxidase. Selenoprotein P is a better indicator of selenium nutritional status, and full expression of it would require more than 66 µg/day.
Metabolic disorders can be treatable by nutrition management, especially if detected early. It is important for dieticians to have knowledge of the genotype to therefore create a treatment that will be more effective for the individual.
Children "outgrow" ketotic hypoglycemia, presumably because fasting tolerance improves as body mass increases. In most the episodes become milder and more infrequent by 4 to 5 years of age and rarely occur after age 9. Onset of hypoglycemia with ketosis after age 5 or persistence after age 7 should elicit referral and an intensive search for a more specific disease.
A large percentage of children that suffer from PEM also have other co-morbid conditions. The most common co-morbidities are diarrhea (72.2% of a sample of 66 subjects) and malaria (43.3%). However, a variety of other conditions have been observed with PEM, including sepsis, severe anaemia, bronchopneumonia, HIV, tuberculosis, scabies, chronic suppurative otitis media, rickets, and keratomalacia. These co-morbidities tax already malnourished children and may prolong hospital stays initially for PEM and may increase the likelihood of death.
Although protein energy malnutrition is more common in low-income countries, children from higher-income countries are also affected, including children from large urban areas in low socioeconomic neighborhoods. This may also occur in children with chronic diseases, and children who are institutionalized or hospitalized for a different diagnosis. Risk factors include a primary diagnosis of intellectual disability, cystic fibrosis, malignancy, cardiovascular disease, end stage renal disease, oncologic disease, genetic disease, neurological disease, multiple diagnoses, or prolonged hospitalization. In these conditions, the challenging nutritional management may get overlooked and underestimated, resulting in an impairment of the chances for recovery and the worsening of the situation.
PEM is fairly common worldwide in both children and adults and accounts for 6 million deaths annually. In the industrialized world, PEM is predominantly seen in hospitals, is associated with disease, or is often found in the elderly.
The International Diabetes Federation consensus worldwide definition of the metabolic syndrome (2006) is:
Central obesity (defined as waist circumference with ethnicity-specific values) AND any two of the following:
- Raised triglycerides: > 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality
- Reduced HDL cholesterol: < 40 mg/dL (1.03 mmol/L) in males, < 50 mg/dL (1.29 mmol/L) in females, or specific treatment for this lipid abnormality
- Raised blood pressure (BP): systolic BP > 130 or diastolic BP >85 mm Hg, or treatment of previously diagnosed hypertension
- Raised fasting plasma glucose (FPG): >100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes
If FPG is >5.6 mmol/L or 100 mg/dL, an oral glucose tolerance test is strongly recommended, but is not necessary to define presence of the syndrome.
Zinc deficiency can be classified as acute, as may occur during prolonged inappropriate zinc-free total parenteral nutrition; or chronic, as may occur in dietary deficiency or inadequate absorption.
The World Health Organization 1999 criteria require the presence of any one of diabetes mellitus, impaired glucose tolerance, impaired fasting glucose or insulin resistance, AND two of the following:
- Blood pressure: ≥ 140/90 mmHg
- Dyslipidemia: triglycerides (TG): ≥ 1.695 mmol/L and high-density lipoprotein cholesterol (HDL-C) ≤ 0.9 mmol/L (male), ≤ 1.0 mmol/L (female)
- Central obesity: waist:hip ratio > 0.90 (male); > 0.85 (female), or body mass index > 30 kg/m
- Microalbuminuria: urinary albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g
A positive diagnosis test for thiamine deficiency can be ascertained by measuring the activity of the enzyme transketolase in erythrocytes (Erythrocyte Transketolase Activation Assay). Thiamine, as well as its phosphate derivatives, can also be detected directly in whole blood, tissues, foods, animal feed, and pharmaceutical preparations following the conversion of thiamine to fluorescent thiochrome derivatives (Thiochrome Assay) and separation by high-performance liquid chromatography (HPLC). In recent reports, a number of Capillary Electrophoresis (CE) techniques and in-capillary enzyme reaction methods have emerged as potential alternative techniques for the determination and monitoring of thiamine in samples.
The normal thiamine concentration in EDTA-blood is about 20-100 µg/l.
It can occur in patients with severely compromised intestinal function, those undergoing total parenteral nutrition, those who have had gastrointestinal bypass surgery, and also in persons of advanced age (i.e., over 90).
People dependent on food grown from selenium-deficient soil may be at risk for deficiency. Increased risk for developing various diseases has also been noted, even when certain individuals lack optimal amounts of selenium, but not enough to be classified as deficient.
For some time now, it has been reported in medical literature that a pattern of side-effects possibly associated with cholesterol-lowering drugs (e.g., statins) may resemble the pathology of selenium deficiency.
Measurements of a child’s growth provide the key information for the presence of malnutrition, but weight and height measurements alone can lead to failure to recognize kwashiorkor and an underestimation of the severity of malnutrition in children.
The appearance of microvillous inclusion disease on light microscopy is similar to celiac sprue; however, it usually lacks the intraepithelial lymphocytic infiltration characteristic of celiac sprue and stains positive for carcinoembryonic antigen (CEA).
The definitive diagnosis is dependent on electron microscopy.
Since the etiology is unconfirmed, diagnosis is generally accomplished when there is hyperammonemia present within 24–36 hours of birth and urea cycle defects can be excluded. Organic acidemias and other metabolic errors must also be excluded. The diagnostic criteria for hyperammonemia is ammonia blood levels higher than 35 µmol/L. This is accomplished by observing urine ketones, organic acids, enzyme levels and activities, and plasma and urine amino acids. Mild Transient Hyperammonemia is diagnosed when ammonia levels are between 40-50 µM, lasts for about 6–8 weeks, and has no related neurological problems. Severe Transient Hyperammonemia is diagnosed when ammonia levels are above 50 µM up to as much as 4000 µM. Severe Transient Hyperammonemia causes neurological problems as ammonia levels in the brain are too high, which can cause infant hyptotonia as well as neonatal seizures. Severe Transient Hyperammonemia can also cause respiratory distress syndrome. Chest x-rays may resemble hyaline membrane disease.
It is nearly always fatal unless, like short bowel syndrome patients, treated with parenteral nutrition or an intestinal transplant. The patient is often classified as being in "intestinal failure" and treated with the cohort of patients known as "short bowel syndrome" patients.