Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language. There is a wide range of language assessments in English. Some are restricted for use by experts in speech-language pathology: speech and language therapists (SaLTs/SLTs) in the UK, speech-language pathologists (SLPs) in the US and Australia. A commonly used test battery for diagnosis of DLD is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation. The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for assessing everyday use of language in children aged 4 years and above who can speak in sentences.
Informal assessments, such as language samples, are often used by speech-language therapists/pathologists to complement formal testing and give an indication of the child's language in a more naturalistic context. A language sample may be of a conversation or narrative retell. In a narrative language sample, an adult may tell the child a story using a wordless picture book (e.g. Frog Where Are You?, Mayer, 1969), then ask the child to use the pictures and tell the story back. Language samples can be transcribed using computer software such as the Systematic Analysis of Language Software, and then analyzed for a range of features: e.g., the grammatical complexity of the child's utterances, whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
Many normed assessments can be used in evaluating skills in the primary academic domains: reading, including word recognition, fluency, and comprehension; mathematics, including computation and problem solving; and written expression, including handwriting, spelling and composition.
The most commonly used comprehensive achievement tests include the Woodcock-Johnson IV (WJ IV), Wechsler Individual Achievement Test II (WIAT II), the Wide Range Achievement Test III (WRAT III), and the Stanford Achievement Test–10th edition. These tests include measures of many academic domains that are reliable in identifying areas of difficulty.
In the reading domain, there are also specialized tests that can be used to obtain details about specific reading deficits. Assessments that measure multiple domains of reading include Gray's Diagnostic Reading Tests–2nd edition (GDRT II) and the Stanford Diagnostic Reading Assessment. Assessments that measure reading subskills include the Gray Oral Reading Test IV – Fourth Edition (GORT IV), Gray Silent Reading Test, Comprehensive Test of Phonological Processing (CTOPP), Tests of Oral Reading and Comprehension Skills (TORCS), Test of Reading Comprehension 3 (TORC-3), Test of Word Reading Efficiency (TOWRE), and the Test of Reading Fluency. A more comprehensive list of reading assessments may be obtained from the Southwest Educational Development Laboratory.
The purpose of assessment is to determine what is needed for intervention, which also requires consideration of contextual variables and whether there are comorbid disorders that must also be identified and treated, such as behavioral issues or language delays. These contextual variables are often assessed using parent and teacher questionnaire forms that rate the students' behaviors and compares them to standardized norms.
However, caution should be made when suspecting the person with a learning disability may also have dementia, especially as people with Down's syndrome may have the neuroanatomical profile but not the associated clinical signs and symptoms. Examination can be carried out of executive functioning as well as social and cognitive abilities but may need adaptation of standardized tests to take account of special needs.
The first English-language IQ test, the Stanford–Binet Intelligence Scales, was adapted from a test battery designed for school placement by Alfred Binet in France. Lewis Terman adapted Binet's test and promoted it as a test measuring "general intelligence." Terman's test was the first widely used mental test to report scores in "intelligence quotient" form ("mental age" divided by chronological age, multiplied by 100). Current tests are scored in "deviation IQ" form, with a performance level by a test-taker two standard deviations below the median score for the test-taker's age group defined as IQ 70. Until the most recent revision of diagnostic standards, an IQ of 70 or below was a primary factor for intellectual disability diagnosis, and IQ scores were used to categorize degrees of intellectual disability.
Since current diagnosis of intellectual disability is not based on IQ scores alone, but must also take into consideration a person's adaptive functioning, the diagnosis is not made rigidly. It encompasses intellectual scores, adaptive functioning scores from an adaptive behavior rating scale based on descriptions of known abilities provided by someone familiar with the person, and also the observations of the assessment examiner who is able to find out directly from the person what he or she can understand, communicate, and such like. IQ assessment must be based on a current test. This enables diagnosis to avoid the pitfall of the Flynn effect, which is a consequence of changes in population IQ test performance changing IQ test norms over time.
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language and nonverbal ability. There is a wide range of language assessments in English. Some are restricted for use by speech and language professionals (therapists or SALTs in the UK, speech-language pathologists, SLPs, in the US and Australia).
A commonly used test battery for diagnosis of SLI is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation.
The Grammar and Phonology Screening (GAPS) test is a quick (ten minute) simple and accurate screening test developed and standardized in the UK. It is suitable for children from 3;4 to 6;8 years;months and can be administered by professionals and non-professionals (including parents) alike, and has been demonstrated to be highly accurate (98% accuracy) in identifying impaired children who need specialist help vs non-impaired children. This makes it potentially a feasible test for widespread screening.
The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for testing language skills in school-aged children.
Informal assessments, such as language samples, may also be used. This procedure is useful when the normative sample of a given test is inappropriate for a given child, for instance, if the child is bilingual and the sample was of monolingual children. It is also an ecologically valid measure of all aspects of language (e.g. semantics, syntax, pragmatics, etc.).
To complete a language sample, the SLP will spend about 15 minutes talking with the child. The sample may be of a conversation (Hadley, 1998), or narrative retell. In a narrative language sample, the SLP will tell the child a story using a wordless picture book (e.g. "Frog Where Are You?", Mayer, 1969), then ask the child to use the pictures and tell the story back.
Language samples are typically transcribed using computer software such as the Systematic Analysis of Language Software (SALT, Miller et al. 2012), and then analyzed. For example, the SLP might look for whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
At its most basic level, dyscalculia is a learning disability affecting the normal development of arithmetic skills.
A consensus has not yet been reached on appropriate diagnostic criteria for dyscalculia. Mathematics is a specific domain that is complex (i.e. includes many different processes, such as arithmetic, algebra, word problems, geometry, etc.) and cumulative (i.e. the processes build on each other such that mastery of an advanced skill requires mastery of many basic skills). Thus dyscalculia can be diagnosed using different criteria, and frequently is; this variety in diagnostic criteria leads to variability in identified samples, and thus variability in research findings regarding dyscalculia.
Other than using achievement tests as diagnostic criteria, researchers often rely on domain-specific tests (i.e. tests of working memory, executive function, inhibition, intelligence, etc.) and teacher evaluations to create a more comprehensive diagnosis. Alternatively, fMRI research has shown that the brains of the neurotypical children can be reliably distinguished from the brains of the dyscalculic children based on the activation in the prefrontal cortex. However, due to the cost and time limitations associated with brain and neural research, these methods will likely not be incorporated into diagnostic criteria despite their effectiveness.
There are tests that can indicate with high probability whether a person is a dyslexic. If diagnostic testing indicates that a person may be dyslexic, such tests are often followed up with a full diagnostic assessment to determine the extent and nature of the disorder. Tests can be administered by a teacher or computer. Some test results indicate how to carry out teaching strategies.
ASD can be detected as early as 18 months or even younger in some cases. A reliable diagnosis can usually be made by the age of two years. The diverse expressions of ASD symptoms pose diagnostic challenges to clinicians. Individuals with an ASD may present at various times of development (e.g., toddler, child, or adolescent), and symptom expression may vary over the course of development. Furthermore, clinicians must differentiate among pervasive developmental disorders, and may also consider similar conditions, including intellectual disability not associated with a pervasive developmental disorder, specific language disorders, ADHD, anxiety, and psychotic disorders.
Considering the unique challenges in diagnosing ASD, specific practice parameters for its assessment have been published by the American Academy of Neurology, the American Academy of Child and Adolescent Psychiatry, and a consensus panel with representation from various professional societies. The practice parameters outlined by these societies include an initial screening of children by general practitioners (i.e., "Level 1 screening") and for children who fail the initial screening, a comprehensive diagnostic assessment by experienced clinicians (i.e. "Level 2 evaluation"). Furthermore, it has been suggested that assessments of children with suspected ASD be evaluated within a developmental framework, include multiple informants (e.g., parents and teachers) from diverse contexts (e.g., home and school), and employ a multidisciplinary team of professionals (e.g., clinical psychologists, neuropsychologists, and psychiatrists).
After a child shows initial evidence of ASD tendencies, psychologists administer various psychological assessment tools to assess for ASD. Among these measurements, the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) are considered the "gold standards" for assessing autistic children. The ADI-R is a semi-structured parent interview that probes for symptoms of autism by evaluating a child's current behavior and developmental history. The ADOS is a semistructured interactive evaluation of ASD symptoms that is used to measure social and communication abilities by eliciting several opportunities (or "presses") for spontaneous behaviors (e.g., eye contact) in standardized context. Various other questionnaires (e.g., The Childhood Autism Rating Scale, Autism Treatment Evaluation Checklist) and tests of cognitive functioning (e.g., The Peabody Picture Vocabulary Test) are typically included in an ASD assessment battery.
In the UK, there is some diagnostic use of the Diagnostic Interview for Social and Communication Disorders (DISCO) was which was developed for use at The Centre for Social and Communication Disorders, by Lorna Wing and Judith Gould, as both a clinical and a research instrument for use with children and adults of any age. The DISCO is designed to elicit a picture of the whole person through the story of their development and behaviour. In clinical work, the primary purpose is to facilitate understanding of the pattern over time of the specific skills and impairments that underlie the overt behaviour. If no information is available, the clinician has to obtain as much information as possible concerning the details of current skills and pattern of behaviour of the person. This type of dimensional approach to clinical description is useful for prescribing treatment.
Assessments for developmental coordination disorder typically require a developmental history, detailing ages at which significant developmental milestones, such as crawling and walking, occurred. Motor skills screening includes activities designed to indicate developmental coordination disorder, including balancing, physical sequencing, touch sensitivity, and variations on walking activities.
The American Psychiatric Association has four primary inclusive diagnostic criteria for determining if a child has developmental coordination disorder.
The criteria are as follows:
1. Motor Coordination will be greatly reduced, although the intelligence of the child is normal for the age.
2. The difficulties the child experiences with motor coordination or planning interfere with the child's daily life.
3. The difficulties with coordination are not due to any other medical condition
4. If the child does also experience comorbidities such as mental retardation; motor coordination is still disproportionally affected.
Screening tests which can be used to assess developmental coordination disorder include:-
- Movement Assessment Battery for Children (Movement-ABC – Movement-ABC 2)
- Peabody Developmental Motor Scales- Second Edition (PDMS-2)
- Bruininks-Oseretsky Test of Motor Proficiency (BOTMP-BOT-2)
- Motoriktest für vier- bis sechsjährige Kinder (MOT 4-6)
- Körperkoordinationtest für Kinder (KTK)
- Test of Gross Motor Development, Second Edition (TGMD-2)
- Maastrichtse Motoriek Test (MMT)
- Wechsler Adult Intelligence Scale (WAIS-IV)
- Wechsler Individual Achievement Test (WAIT-II)
- Test of Word Reading Efficiency (TOWRE-2)
- Developmental Coordination Disorder Questionnaire (DCD-Q)
- Children's Self-Perceptions of Adequacy in, and Predilection for Physical Activity (CSAPPA)
Currently there is no single gold standard assessment test.
A baseline motor assessment establishes the starting point for developmental intervention programs. Comparing children to normal rates of development may help to establish areas of significant difficulty.
However, research in the "British Journal of Special Education" has shown that knowledge is severely limited in many who should be trained to recognise and respond to various difficulties, including developmental coordination disorder, dyslexia and deficits in attention, motor control and perception (DAMP). The earlier that difficulties are noted and timely assessments occur, the quicker intervention can begin. A teacher or GP could miss a diagnosis if they are only applying a cursory knowledge.
"Teachers will not be able to recognise or accommodate the child with learning difficulties in class if their knowledge is limited. Similarly GPs will find it difficult to detect and appropriately refer children with learning difficulties."
Adaptive behavior, or adaptive functioning, refers to the skills needed to live independently (or at the minimally acceptable level for age). To assess adaptive behavior, professionals compare the functional abilities of a child to those of other children of similar age. To measure adaptive behavior, professionals use structured interviews, with which they systematically elicit information about persons' functioning in the community from people who know them well. There are many adaptive behavior scales, and accurate assessment of the quality of someone's adaptive behavior requires clinical judgment as well. Certain skills are important to adaptive behavior, such as:
- Daily living skills, such as getting dressed, using the bathroom, and feeding oneself
- Communication skills, such as understanding what is said and being able to answer
- Social skills with peers, family members, spouses, adults, and others
Learning disabilities can be categorized by either the type of information processing affected by the disability or by the specific difficulties caused by a processing deficit.
DLD is defined purely in behavioural terms: there is no biological test. There are three points that need to be met for a diagnosis of DLD:
1. The child has language difficulties that create obstacles to communication or learning in everyday life,
2. The child's language problems are unlikely to resolve by five years of age, and
3. The problems are not associated with a known biomedical condition such as brain injury, neurodegenerative conditions, genetic conditions or chromosome disorders such as Down Syndrome, sensorineural hearing loss, or Autism Spectrum Disorder or Intellectual Disability.
For research and epidemiological purposes, specific cutoffs on language assessments have been used to document the first criterion. Tomblin et al. proposed the EpiSLI criterion, based on five composite scores representing performance in three domains of language (vocabulary, grammar, and narration) and two modalities (comprehension and production). Children scoring in the lowest 10% on two or more composite scores are identified as having language disorder.
The second criterion, persistence of language problems, can be difficult to judge in a young child, but longitudinal studies have shown that difficulties are less likely to resolve for children who have poor language comprehension, rather than difficulties confined to expressive language. In addition, children with isolated difficulties in just one of the areas noted under 'subtypes' tend to make better progress than those whose language is impaired in several areas.
The third criterion specifies that DLD is used for children whose language disorder is not part of another biomedical condition, such as a genetic syndrome, a sensorineural hearing loss, neurological disease, Autism Spectrum Disorder or Intellectual Disability – these were termed 'differentiating conditions' by the CATALISE panel. Language disorders occurring with these conditions need to be assessed and children offered appropriate intervention, but a terminological distinction is made so that these cases would be diagnosed as Language Disorder associated with ___, with the main diagnosis being specified: e.g. "Language Disorder associated with Autism Spectrum Disorder." The reasoning behind these diagnostic distinctions is discussed further by Bishop (2017).
Dyslexic children require special instruction for word analysis and spelling from an early age. While there are fonts that may help people with dyslexia better understand writing, this might simply be due to the added spacing between words. The prognosis, generally speaking, is positive for individuals who are identified in childhood and receive support from friends and family.
Developmental Verbal Dyspraxia can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. Tests such as the Kaufman Speech Praxis test, a more formal examination, are also used in diagnosis.
A differential diagnosis of DVD/CAS is often not possible for children under the age of 2 years old. Even when children are between 2–3 years, a clear diagnosis cannot always occur, because at this age, they may still be unable to focus on, or cooperate with, diagnostic testing.
Parents of children with Asperger syndrome can typically trace differences in their children's development to as early as 30 months of age. Developmental screening during a routine check-up by a general practitioner or pediatrician may identify signs that warrant further investigation. The United States Preventive Services Task Force in 2016 found it was unclear if screening was beneficial or harmful among children in whom there are no concerns.
The diagnosis of AS is complicated by the use of several different screening instruments, including the Asperger Syndrome Diagnostic Scale (ASDS), Autism Spectrum Screening Questionnaire (ASSQ), Childhood Autism Spectrum Test (CAST) (previously called the Childhood Asperger Syndrome Test), Gilliam Asperger's disorder scale (GADS), Krug Asperger's Disorder Index (KADI), and the Autism-spectrum quotient (AQ; with versions for children, adolescents and adults). None have been shown to reliably differentiate between AS and other ASDs.
Epidemiological surveys, in the US and Canada, estimated the prevalence of SLI in 5-year-olds at around 7 percent. However, neither study adopted the stringent 'discrepancy' criteria of the Diagnostic and Statistical Manual of Mental Disorders or ICD-10; SLI was diagnosed if the child scored below cut-off on standardized language tests, but had a nonverbal IQ of 90 or above and no other exclusionary criteria.
Research on subtypes of dyscalculia has begun without consensus; preliminary research has focused on comorbid learning disorders as subtyping candidates. The most common comorbidity in individuals with dyscalculia is dyslexia. Most studies done with comorbid samples versus dyscalculic-only samples have shown different mechanisms at work and additive effects of comorbidity, indicating that such subtyping may not be helpful in diagnosing dyscalculia. But there is variability in results at present.
Due to high comorbidity with other disabilities such as dyslexia and ADHD, some researchers have suggested the possibility of subtypes of mathematical disabilities with different underlying profiles and causes. Whether a particular subtype is specifically termed "dyscalculia" as opposed to a more general mathematical learning disability is somewhat under debate in the scientific literature.
- Semantic memory: This subtype often coexists with reading disabilities such as dyslexia and is characterized by poor representation and retrieval from long-term memory. These processes share a common neural pathway in the left angular gyrus, which has been shown to be selective in arithmetic fact retrieval strategies and symbolic magnitude judgments. This region also shows low functional connectivity with language-related areas during phonological processing in adults with dyslexia. Thus, disruption to the left angular gyrus can cause both reading impairments and difficulties in calculation. This has been observed in individuals with Gerstmann syndrome, of which dyscalculia is one of constellation of symptoms.
- Procedural concepts: Research by Geary has shown that in addition to increased problems with fact retrieval, children with math disabilities may rely on immature computational strategies. Specifically, children with mathematical disabilities showed poor command of counting strategies unrelated to their ability to retrieve numeric facts. This research notes that it is difficult to discern whether poor conceptual knowledge is indicative of a qualitative deficit in number processing or simply a delay in typical mathematical development.
- Working memory: Studies have found that children with dyscalculia showed impaired performance on working memory tasks compared to neurotypical children. Furthermore, research has shown that children with dyscalculia have weaker activation of the intraparietal sulcus during visuospatial working memory tasks. Brain activity in this region during such tasks has been linked to overall arithmetic performance, indicating that numerical and working memory functions may converge in the intraparietal sulcus. However, working memory problems are confounded with domain-general learning difficulties, thus these deficits may not be specific to dyscalculia but rather may reflect a greater learning deficit. Dysfunction in prefrontal regions may also lead to deficits in working memory and other executive function, accounting for comorbidity with ADHD.
Studies have also shown indications of causes due to congenital or hereditary disorders, but evidence of this is not yet concrete.
Standard diagnostic criteria require impairment in social interaction and repetitive and stereotyped patterns of behavior, activities and interests, without significant delay in language or cognitive development. Unlike the international standard, the DSM-IV-TR criteria also required significant impairment in day-to-day functioning; DSM-5 eliminated AS as a separate diagnosis in 2013, and folded it into the umbrella of autism spectrum disorders. Other sets of diagnostic criteria have been proposed by Szatmari "et al." and by Gillberg and Gillberg.
Diagnosis is most commonly made between the ages of four and eleven. A comprehensive assessment involves a multidisciplinary team that observes across multiple settings, and includes neurological and genetic assessment as well as tests for cognition, psychomotor function, verbal and nonverbal strengths and weaknesses, style of learning, and skills for independent living. The "gold standard" in diagnosing ASDs combines clinical judgment with the Autism Diagnostic Interview-Revised (ADI-R)—a semistructured parent interview—and the Autism Diagnostic Observation Schedule (ADOS)—a conversation and play-based interview with the child. Delayed or mistaken diagnosis can be traumatic for individuals and families; for example, misdiagnosis can lead to medications that worsen behavior.
Underdiagnosis and overdiagnosis may be problems. The cost and difficulty of screening and assessment can delay diagnosis. Conversely, the increasing popularity of drug treatment options and the expansion of benefits has motivated providers to overdiagnose ASD. There are indications AS has been diagnosed more frequently in recent years, partly as a residual diagnosis for children of normal intelligence who are not autistic but have social difficulties.
There are questions about the external validity of the AS diagnosis. That is, it is unclear whether there is a practical benefit in distinguishing AS from HFA and from PDD-NOS; the same child can receive different diagnoses depending on the screening tool. The debate about distinguishing AS from HFA is partly due to a tautological dilemma where disorders are defined based on severity of impairment, so that studies that appear to confirm differences based on severity are to be expected.
PDD-NOS is an old diagnostic category. It is no longer included as an option for an Autism Spectrum Disorder and is not part of the DSM-5, but is included in the ICD-10.
The diagnosis of a pervasive developmental disorder not otherwise specified is given to individuals with difficulties in the areas of social interaction, communication, and/or stereotyped behavior patterns or interests, but who do not meet the full DSM-IV criteria for autism or another PDD. This does not necessarily mean that PDD-NOS is a milder disability than the other PDDs. It only means that individuals who receive this diagnosis do not meet the diagnostic criteria of the other PDDs, but that there is still a pervasive developmental disorder that affects the individual in the areas of communication, socialization and behavior.
As for the other pervasive developmental disorders, diagnosis of PDD-NOS requires the involvement of a team of specialists. The individual needs to undergo a full diagnostic evaluation, including a thorough medical, social, adaptive, motor skills and communication history. Other parts of an assessment can be behavioral rating scales, direct behavioral observations, psychological assessment, educational assessment, communication assessment, and occupational assessment.
Description of PDD-NOS merely as a "subthreshold" category without a more specific case definition poses methodological problems for research regarding the relatively heterogeneous group of people who receive this diagnosis. However, it appears that children with PDD-NOS show fewer intellectual deficits than autistic children, and that they may come to professional attention at a later age.
Developmental coordination disorder is a lifelong neurological condition that is more common in males than in females, with a ratio of approximately four males to every female. The exact proportion of people with the disorder is unknown since the disorder can be difficult to detect due to a lack of specific laboratory tests, thus making diagnosis of the condition one of elimination of all other possible causes/diseases. Approximately 5–6% of children are affected by this condition.
Studies suggest that persons with PDD-NOS belong to one of three very different subgroups:
- A high-functioning group (around 25 percent) whose symptoms largely overlap with that of Asperger syndrome, but who differ in terms of having a lag in language development and/or mild cognitive impairment. (The criteria for Asperger syndrome excludes a speech delay or a cognitive impairment.)
- A group (around 25 percent) whose symptoms more closely resemble those of autism spectrum disorder, but do not fully meet all its diagnostic signs and symptoms.
- The biggest group (around 50 percent) consists of those who meet all the diagnostic criteria for autism spectrum disorder, but whose stereotypical and repetitive behaviors are noticeably mild.
For nonverbal grade school children and adolescents with autism, communication systems and interventions have been implemented to enhance language and communication outcomes. Speech-generated devices, such as iPads, use visual displays for children who lack verbal language, giving them the task of selecting icons indicating a request or need. For adolescents with nonverbal autism, interventions can condition them to learn more advanced operations on speech-generated devices that require more steps (i.e. turning on device, scrolling through pages), which would allow them to enhance their communicative abilities independently.
The Picture Exchange System (PECS) is an alternative form of spontaneous communication for children with autism in which an individual selects a picture indicating a request. PECS can be utilized in educational settings and at the child’s home. Longitudinal studies suggest PECS can have long-term positive outcomes for school-aged children with nonverbal autism, specifically their social-communicative skills, such as higher frequencies of joint attention and initiation, and duration of cooperative play, which are all important roles in improving language outcomes.
It has also been suggested that a significant stage in acquiring verbal language is learning how to identify and reproduce syllables of words. One study found that nonverbal and minimally verbal children with autism are capable of enhancing their oral production and vocalizing written words by isolating each syllable of a word one at a time. The process of breaking down a syllable at a time and having it visually displayed and audibly available to the child can prompt him or her to imitate and create nonrandom and meaningful utterances.
Most of these studies contain small sample sizes and were pilot studies, making additional research significant to assess whether these findings can be generalized to all age groups of the same population. Furthermore, most studies on nonverbal autism speech-generated device communication were based on more basic skills, such as naming pictures and making requests for stimuli, while studies in advanced communication (i.e. asking "how are you?") is limited.
1. SCAN is the most common tool for diagnosing APD, and it also standardized. It is composed for four subsets: discrimination of monaurally presented single words against background noise, acoustically degraded single words, dichotically presented single words, sentence stimuli. Different versions of the test are used depending on the age of the patient.
2. Random Gap Detection Test (RGDT) is also a standardized test. It assesses an individual’s gap detection threshold of tones and white noise. The exam includes stimuli at four different frequencies (500, 1000, 2000, and 4000 Hz) and white noise clicks of 50 ms duration. It is a useful test because it provides an index of auditory temporal resolution. In children, an overall gap detection threshold greater than 20 ms means they have failed.
3. Gaps in Noise Test (GIN) also measures temporal resolution by testing the patient's gap detection threshold in white noise.
4. Pitch Patterns Sequence Test (PPT) and Duration Patterns Sequence Test (DPT) measure auditory pattern identification. The PPS has s series of three tones presented at either of two pitches (high or low). Meanwhile, the DPS has a series of three tones that vary in duration rather than pitch (long or short). Patients are then asked to describe the pattern of pitches presented.
It is estimated that 25 to 50% of children diagnosed with Autism Spectrum Disorder (ASD) never develop spoken language beyond a few words or utterances. Despite the growing field of research on ASD, there is not much information available pertaining to individuals with autism who never develop functional language; that, in fact, individuals with nonverbal autism are considered to be underrepresented in all of autism research. Because of the limited research on nonverbal autism, there are not many validated measurements appropriate for this population. For example, while they may be appropriate for younger children, they lack the validity for grade-school aged children and adolescents and have continued to be a roadblock for nonverbal autism research. Often in autism research, individuals with nonverbal autism are sub-grouped with LFA, categorized by learning at most one word or having minimal verbal language.
Most of the existing body of research in nonverbal autism focuses on early interventions that predict successful language outcomes. Research suggests that most spoken language is inherited before the age of five, and the likelihood of acquiring functional language in the future past this age is minimal, that early language development is crucial to educational achievement, employment, independence during adulthood, and social relationships.
Autism spectrum disorders tend to be highly comorbid with other disorders. Comorbidity may increase with age and may worsen the course of youth with ASDs and make intervention/treatment more difficult. Distinguishing between ASDs and other diagnoses can be challenging, because the traits of ASDs often overlap with symptoms of other disorders, and the characteristics of ASDs make traditional diagnostic procedures difficult.
The most common medical condition occurring in individuals with autism spectrum disorders is seizure disorder or epilepsy, which occurs in 11-39% of individuals with ASD. Tuberous sclerosis, a medical condition in which non-malignant tumors grow in the brain and on other vital organs, occurs in 1-4% of individuals with ASDs.
Intellectual disabilities are some of the most common comorbid disorders with ASDs. Recent estimates suggest that 40-69% of individuals with ASD have some degree of an intellectual disability, more likely to be severe for females. A number of genetic syndromes causing intellectual disability may also be comorbid with ASD, including fragile X syndrome, Down syndrome, Prader-Willi and Angelman syndromes, and Williams syndrome.
Learning disabilities are also highly comorbid in individuals with an ASD. Approximately 25-75% of individuals with an ASD also have some degree of a learning disability.
Various anxiety disorders tend to co-occur with autism spectrum disorders, with overall comorbidity rates of 7-84%. Rates of comorbid depression in individuals with an ASD range from 4–58%. The relationship between ASD and schizophrenia remains a controversial subject under continued investigation, and recent meta-analyses have examined genetic, environmental, infectious, and immune risk factors that may be shared between the two conditions.
Deficits in ASD are often linked to behavior problems, such as difficulties following directions, being cooperative, and doing things on other people's terms. Symptoms similar to those of attention deficit hyperactivity disorder (ADHD) can be part of an ASD diagnosis.
Sensory processing disorder is also comorbid with ASD, with comorbidity rates of 42–88%.
Remediation includes both appropriate remedial instruction and classroom accommodations.