Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
About half of parents of children with ASD notice their child's unusual behaviors by age 18 months, and about four-fifths notice by age 24 months. According to an article, failure to meet any of the following milestones "is an absolute indication to proceed with further evaluations. Delay in referral for such testing may delay early diagnosis and treatment and affect the long-term outcome".
- No babbling by 12 months.
- No gesturing (pointing, waving, etc.) by 12 months.
- No single words by 16 months.
- No two-word (spontaneous, not just echolalic) phrases by 24 months.
- Any loss of any language or social skills, at any age.
The United States Preventive Services Task Force in 2016 found it was unclear if screening was beneficial or harmful among children in whom there is no concerns. The Japanese practice is to screen all children for ASD at 18 and 24 months, using autism-specific formal screening tests. In contrast, in the UK, children whose families or doctors recognize possible signs of autism are screened. It is not known which approach is more effective. Screening tools include the Modified Checklist for Autism in Toddlers (M-CHAT), the Early Screening of Autistic Traits Questionnaire, and the First Year Inventory; initial data on M-CHAT and its predecessor, the Checklist for Autism in Toddlers (CHAT), on children aged 18–30 months suggests that it is best used in a clinical setting and that it has low sensitivity (many false-negatives) but good specificity (few false-positives). It may be more accurate to precede these tests with a broadband screener that does not distinguish ASD from other developmental disorders. Screening tools designed for one culture's norms for behaviors like eye contact may be inappropriate for a different culture. Although genetic screening for autism is generally still impractical, it can be considered in some cases, such as children with neurological symptoms and dysmorphic features.
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language. There is a wide range of language assessments in English. Some are restricted for use by experts in speech-language pathology: speech and language therapists (SaLTs/SLTs) in the UK, speech-language pathologists (SLPs) in the US and Australia. A commonly used test battery for diagnosis of DLD is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation. The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for assessing everyday use of language in children aged 4 years and above who can speak in sentences.
Informal assessments, such as language samples, are often used by speech-language therapists/pathologists to complement formal testing and give an indication of the child's language in a more naturalistic context. A language sample may be of a conversation or narrative retell. In a narrative language sample, an adult may tell the child a story using a wordless picture book (e.g. Frog Where Are You?, Mayer, 1969), then ask the child to use the pictures and tell the story back. Language samples can be transcribed using computer software such as the Systematic Analysis of Language Software, and then analyzed for a range of features: e.g., the grammatical complexity of the child's utterances, whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
While infection with rubella during pregnancy causes fewer than 1% of cases of autism, vaccination against rubella can prevent many of those cases.
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language and nonverbal ability. There is a wide range of language assessments in English. Some are restricted for use by speech and language professionals (therapists or SALTs in the UK, speech-language pathologists, SLPs, in the US and Australia).
A commonly used test battery for diagnosis of SLI is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation.
The Grammar and Phonology Screening (GAPS) test is a quick (ten minute) simple and accurate screening test developed and standardized in the UK. It is suitable for children from 3;4 to 6;8 years;months and can be administered by professionals and non-professionals (including parents) alike, and has been demonstrated to be highly accurate (98% accuracy) in identifying impaired children who need specialist help vs non-impaired children. This makes it potentially a feasible test for widespread screening.
The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for testing language skills in school-aged children.
Informal assessments, such as language samples, may also be used. This procedure is useful when the normative sample of a given test is inappropriate for a given child, for instance, if the child is bilingual and the sample was of monolingual children. It is also an ecologically valid measure of all aspects of language (e.g. semantics, syntax, pragmatics, etc.).
To complete a language sample, the SLP will spend about 15 minutes talking with the child. The sample may be of a conversation (Hadley, 1998), or narrative retell. In a narrative language sample, the SLP will tell the child a story using a wordless picture book (e.g. "Frog Where Are You?", Mayer, 1969), then ask the child to use the pictures and tell the story back.
Language samples are typically transcribed using computer software such as the Systematic Analysis of Language Software (SALT, Miller et al. 2012), and then analyzed. For example, the SLP might look for whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
ASD can be detected as early as 18 months or even younger in some cases. A reliable diagnosis can usually be made by the age of two years. The diverse expressions of ASD symptoms pose diagnostic challenges to clinicians. Individuals with an ASD may present at various times of development (e.g., toddler, child, or adolescent), and symptom expression may vary over the course of development. Furthermore, clinicians must differentiate among pervasive developmental disorders, and may also consider similar conditions, including intellectual disability not associated with a pervasive developmental disorder, specific language disorders, ADHD, anxiety, and psychotic disorders.
Considering the unique challenges in diagnosing ASD, specific practice parameters for its assessment have been published by the American Academy of Neurology, the American Academy of Child and Adolescent Psychiatry, and a consensus panel with representation from various professional societies. The practice parameters outlined by these societies include an initial screening of children by general practitioners (i.e., "Level 1 screening") and for children who fail the initial screening, a comprehensive diagnostic assessment by experienced clinicians (i.e. "Level 2 evaluation"). Furthermore, it has been suggested that assessments of children with suspected ASD be evaluated within a developmental framework, include multiple informants (e.g., parents and teachers) from diverse contexts (e.g., home and school), and employ a multidisciplinary team of professionals (e.g., clinical psychologists, neuropsychologists, and psychiatrists).
After a child shows initial evidence of ASD tendencies, psychologists administer various psychological assessment tools to assess for ASD. Among these measurements, the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) are considered the "gold standards" for assessing autistic children. The ADI-R is a semi-structured parent interview that probes for symptoms of autism by evaluating a child's current behavior and developmental history. The ADOS is a semistructured interactive evaluation of ASD symptoms that is used to measure social and communication abilities by eliciting several opportunities (or "presses") for spontaneous behaviors (e.g., eye contact) in standardized context. Various other questionnaires (e.g., The Childhood Autism Rating Scale, Autism Treatment Evaluation Checklist) and tests of cognitive functioning (e.g., The Peabody Picture Vocabulary Test) are typically included in an ASD assessment battery.
In the UK, there is some diagnostic use of the Diagnostic Interview for Social and Communication Disorders (DISCO) was which was developed for use at The Centre for Social and Communication Disorders, by Lorna Wing and Judith Gould, as both a clinical and a research instrument for use with children and adults of any age. The DISCO is designed to elicit a picture of the whole person through the story of their development and behaviour. In clinical work, the primary purpose is to facilitate understanding of the pattern over time of the specific skills and impairments that underlie the overt behaviour. If no information is available, the clinician has to obtain as much information as possible concerning the details of current skills and pattern of behaviour of the person. This type of dimensional approach to clinical description is useful for prescribing treatment.
Parents of children with Asperger syndrome can typically trace differences in their children's development to as early as 30 months of age. Developmental screening during a routine check-up by a general practitioner or pediatrician may identify signs that warrant further investigation. The United States Preventive Services Task Force in 2016 found it was unclear if screening was beneficial or harmful among children in whom there are no concerns.
The diagnosis of AS is complicated by the use of several different screening instruments, including the Asperger Syndrome Diagnostic Scale (ASDS), Autism Spectrum Screening Questionnaire (ASSQ), Childhood Autism Spectrum Test (CAST) (previously called the Childhood Asperger Syndrome Test), Gilliam Asperger's disorder scale (GADS), Krug Asperger's Disorder Index (KADI), and the Autism-spectrum quotient (AQ; with versions for children, adolescents and adults). None have been shown to reliably differentiate between AS and other ASDs.
Standard diagnostic criteria require impairment in social interaction and repetitive and stereotyped patterns of behavior, activities and interests, without significant delay in language or cognitive development. Unlike the international standard, the DSM-IV-TR criteria also required significant impairment in day-to-day functioning; DSM-5 eliminated AS as a separate diagnosis in 2013, and folded it into the umbrella of autism spectrum disorders. Other sets of diagnostic criteria have been proposed by Szatmari "et al." and by Gillberg and Gillberg.
Diagnosis is most commonly made between the ages of four and eleven. A comprehensive assessment involves a multidisciplinary team that observes across multiple settings, and includes neurological and genetic assessment as well as tests for cognition, psychomotor function, verbal and nonverbal strengths and weaknesses, style of learning, and skills for independent living. The "gold standard" in diagnosing ASDs combines clinical judgment with the Autism Diagnostic Interview-Revised (ADI-R)—a semistructured parent interview—and the Autism Diagnostic Observation Schedule (ADOS)—a conversation and play-based interview with the child. Delayed or mistaken diagnosis can be traumatic for individuals and families; for example, misdiagnosis can lead to medications that worsen behavior.
Underdiagnosis and overdiagnosis may be problems. The cost and difficulty of screening and assessment can delay diagnosis. Conversely, the increasing popularity of drug treatment options and the expansion of benefits has motivated providers to overdiagnose ASD. There are indications AS has been diagnosed more frequently in recent years, partly as a residual diagnosis for children of normal intelligence who are not autistic but have social difficulties.
There are questions about the external validity of the AS diagnosis. That is, it is unclear whether there is a practical benefit in distinguishing AS from HFA and from PDD-NOS; the same child can receive different diagnoses depending on the screening tool. The debate about distinguishing AS from HFA is partly due to a tautological dilemma where disorders are defined based on severity of impairment, so that studies that appear to confirm differences based on severity are to be expected.
There is a division among doctors on the use of the term PDD. Many use the term PDD as a short way of saying PDD-NOS. Others use the general category because the term PDD actually refers to a category of disorders and is not a diagnostic label.
PDD is not itself a diagnosis, while PDD-NOS is a diagnosis. To further complicate the issue, PDD-NOS can also be referred to as "atypical personality development", "atypical PDD", or "atypical Autism".
Because of the "NOS", which means "not otherwise specified", it is hard to describe what PDD-NOS is, other than its being an autism spectrum disorder (ASD). Some people diagnosed with PDD-NOS are close to having Asperger syndrome, but do not quite fit. Others have near full-fledged autism, but without some of its symptoms. The psychology field is considering creating several subclasses within PDD-NOS.
DLD is defined purely in behavioural terms: there is no biological test. There are three points that need to be met for a diagnosis of DLD:
1. The child has language difficulties that create obstacles to communication or learning in everyday life,
2. The child's language problems are unlikely to resolve by five years of age, and
3. The problems are not associated with a known biomedical condition such as brain injury, neurodegenerative conditions, genetic conditions or chromosome disorders such as Down Syndrome, sensorineural hearing loss, or Autism Spectrum Disorder or Intellectual Disability.
For research and epidemiological purposes, specific cutoffs on language assessments have been used to document the first criterion. Tomblin et al. proposed the EpiSLI criterion, based on five composite scores representing performance in three domains of language (vocabulary, grammar, and narration) and two modalities (comprehension and production). Children scoring in the lowest 10% on two or more composite scores are identified as having language disorder.
The second criterion, persistence of language problems, can be difficult to judge in a young child, but longitudinal studies have shown that difficulties are less likely to resolve for children who have poor language comprehension, rather than difficulties confined to expressive language. In addition, children with isolated difficulties in just one of the areas noted under 'subtypes' tend to make better progress than those whose language is impaired in several areas.
The third criterion specifies that DLD is used for children whose language disorder is not part of another biomedical condition, such as a genetic syndrome, a sensorineural hearing loss, neurological disease, Autism Spectrum Disorder or Intellectual Disability – these were termed 'differentiating conditions' by the CATALISE panel. Language disorders occurring with these conditions need to be assessed and children offered appropriate intervention, but a terminological distinction is made so that these cases would be diagnosed as Language Disorder associated with ___, with the main diagnosis being specified: e.g. "Language Disorder associated with Autism Spectrum Disorder." The reasoning behind these diagnostic distinctions is discussed further by Bishop (2017).
PDD-NOS is an old diagnostic category. It is no longer included as an option for an Autism Spectrum Disorder and is not part of the DSM-5, but is included in the ICD-10.
The diagnosis of a pervasive developmental disorder not otherwise specified is given to individuals with difficulties in the areas of social interaction, communication, and/or stereotyped behavior patterns or interests, but who do not meet the full DSM-IV criteria for autism or another PDD. This does not necessarily mean that PDD-NOS is a milder disability than the other PDDs. It only means that individuals who receive this diagnosis do not meet the diagnostic criteria of the other PDDs, but that there is still a pervasive developmental disorder that affects the individual in the areas of communication, socialization and behavior.
As for the other pervasive developmental disorders, diagnosis of PDD-NOS requires the involvement of a team of specialists. The individual needs to undergo a full diagnostic evaluation, including a thorough medical, social, adaptive, motor skills and communication history. Other parts of an assessment can be behavioral rating scales, direct behavioral observations, psychological assessment, educational assessment, communication assessment, and occupational assessment.
Description of PDD-NOS merely as a "subthreshold" category without a more specific case definition poses methodological problems for research regarding the relatively heterogeneous group of people who receive this diagnosis. However, it appears that children with PDD-NOS show fewer intellectual deficits than autistic children, and that they may come to professional attention at a later age.
Epidemiological surveys, in the US and Canada, estimated the prevalence of SLI in 5-year-olds at around 7 percent. However, neither study adopted the stringent 'discrepancy' criteria of the Diagnostic and Statistical Manual of Mental Disorders or ICD-10; SLI was diagnosed if the child scored below cut-off on standardized language tests, but had a nonverbal IQ of 90 or above and no other exclusionary criteria.
For nonverbal grade school children and adolescents with autism, communication systems and interventions have been implemented to enhance language and communication outcomes. Speech-generated devices, such as iPads, use visual displays for children who lack verbal language, giving them the task of selecting icons indicating a request or need. For adolescents with nonverbal autism, interventions can condition them to learn more advanced operations on speech-generated devices that require more steps (i.e. turning on device, scrolling through pages), which would allow them to enhance their communicative abilities independently.
The Picture Exchange System (PECS) is an alternative form of spontaneous communication for children with autism in which an individual selects a picture indicating a request. PECS can be utilized in educational settings and at the child’s home. Longitudinal studies suggest PECS can have long-term positive outcomes for school-aged children with nonverbal autism, specifically their social-communicative skills, such as higher frequencies of joint attention and initiation, and duration of cooperative play, which are all important roles in improving language outcomes.
It has also been suggested that a significant stage in acquiring verbal language is learning how to identify and reproduce syllables of words. One study found that nonverbal and minimally verbal children with autism are capable of enhancing their oral production and vocalizing written words by isolating each syllable of a word one at a time. The process of breaking down a syllable at a time and having it visually displayed and audibly available to the child can prompt him or her to imitate and create nonrandom and meaningful utterances.
Most of these studies contain small sample sizes and were pilot studies, making additional research significant to assess whether these findings can be generalized to all age groups of the same population. Furthermore, most studies on nonverbal autism speech-generated device communication were based on more basic skills, such as naming pictures and making requests for stimuli, while studies in advanced communication (i.e. asking "how are you?") is limited.
The pervasive developmental disorders are:
- Pervasive developmental disorder not otherwise specified (PDD-NOS), which includes atypical autism, and is the most common (47% of diagnoses);
- Autism, the best-known;
- Asperger syndrome (9% of autism diagnoses);
- Rett syndrome; and
- Childhood disintegrative disorder (CDD).
The first three of these disorders are commonly called the autism spectrum disorders; the last two disorders are much rarer, and are sometimes placed in the autism spectrum and sometimes not.
In May 2013, the "Diagnostic and Statistical Manual-Fifth Edition" ("DSM-5") was released, updating the classification for pervasive developmental disorders. The grouping of disorders, including PDD-NOS, Autism, Asperger Syndrome, Rett Syndrome, and CDD, has been removed and replaced with the general term of Autism Spectrum Disorders. The American Psychiatric Association has concluded that using the general diagnosis of ASD supports more accurate diagnoses. The combination of these disorders was also fueled by the standpoint that Autism is characterized by common symptoms and should therefore bear a single diagnostic term. In order to distinguish between the different disorders, the DSM-5 employs severity levels. The severity levels take into account required support, restricted interests and repetitive behaviors, and deficits in social communication.
Studies suggest that persons with PDD-NOS belong to one of three very different subgroups:
- A high-functioning group (around 25 percent) whose symptoms largely overlap with that of Asperger syndrome, but who differ in terms of having a lag in language development and/or mild cognitive impairment. (The criteria for Asperger syndrome excludes a speech delay or a cognitive impairment.)
- A group (around 25 percent) whose symptoms more closely resemble those of autism spectrum disorder, but do not fully meet all its diagnostic signs and symptoms.
- The biggest group (around 50 percent) consists of those who meet all the diagnostic criteria for autism spectrum disorder, but whose stereotypical and repetitive behaviors are noticeably mild.
There are several measures that can be employed to assess the executive functioning capabilities of an individual. Although a trained non-professional working outside of an institutionalized setting can legally and competently perform many of these measures, a trained professional administering the test in a standardized setting will yield the most accurate results.
Loss of language and skills related to social interaction and self-care are serious. The affected children face ongoing disabilities in certain areas and require long term care. Treatment of CDD involves both behavior therapy, environmental therapy and medications.
- Behavior therapy: The main aim of Applied Behavior Analysis (ABA) is to systematically teach the child to relearn language, self-care and social skills. The treatment programs designed in this respect "use a system of rewards to reinforce desirable behaviors and discourage problem behavior." ABA programs may be designed by a board-certified specialist in behavior analysis called a "BCBA" (Board Certified Behavior Analyst), but ABA is also widely used by a number of other health care personnel from different fields like psychologists, speech therapists, physical therapists and occupational therapists with differing levels of expertise. Parents, teachers and caregivers are instructed to use these behavior therapy methods at all times.
- Environmental Therapy: Sensory Enrichment Therapy uses enrichment of the sensory experience to improve symptoms in autism, many of which are common to CDD.
- Medications: There are no medications available to directly treat CDD. Antipsychotic medications are used to treat severe behavior problems like aggressive stance and repetitive behavior patterns. Anticonvulsant medications are used to control seizures.
It is estimated that 25 to 50% of children diagnosed with Autism Spectrum Disorder (ASD) never develop spoken language beyond a few words or utterances. Despite the growing field of research on ASD, there is not much information available pertaining to individuals with autism who never develop functional language; that, in fact, individuals with nonverbal autism are considered to be underrepresented in all of autism research. Because of the limited research on nonverbal autism, there are not many validated measurements appropriate for this population. For example, while they may be appropriate for younger children, they lack the validity for grade-school aged children and adolescents and have continued to be a roadblock for nonverbal autism research. Often in autism research, individuals with nonverbal autism are sub-grouped with LFA, categorized by learning at most one word or having minimal verbal language.
Most of the existing body of research in nonverbal autism focuses on early interventions that predict successful language outcomes. Research suggests that most spoken language is inherited before the age of five, and the likelihood of acquiring functional language in the future past this age is minimal, that early language development is crucial to educational achievement, employment, independence during adulthood, and social relationships.
The Clock drawing test (CDT) is a brief cognitive task that can be used by physicians who suspect neurological dysfunction based on history and physical examination. It is relatively easy to train non-professional staff to administer a CDT. Therefore, this is a test that can easily be administered in educational and geriatric settings and can be utilized as a precursory measure to indicate the likelihood of further/future deficits. Also, generational, educational and cultural differences are not perceived as impacting the utility of the CDT.
The procedure of the CDT begins with the instruction to the participant to draw a clock reading a specific time (generally 11:10). After the task is complete, the test administrator draws a clock with the hands set at the same specific time. Then the patient is asked to copy the image. Errors in clock drawing are classified according to the following categories: omissions, perseverations, rotations, misplacements, distortions, substitutions and additions. Memory, concentration, initiation, energy, mental clarity and indecision are all measures that are scored during this activity. Those with deficits in executive functioning will often make errors on the first clock but not the second. In other words, they will be unable to generate their own example, but will show proficiency in the copying task.
The first diagnosed case of ASD was published in 1943 by American psychiatrist Leo Kanner. There is a wide range of cases and severity to ASD so it is very hard to detect the first signs of ASD. A diagnosis of ASD can be made accurately before the child is 3 years old, but the diagnosis of ASD is not commonly confirmed until the child is somewhat older. The age of diagnosis can range from 9 months to 14 years, and the mean age is 4 years old in the USA. On average each case of ASD is tested at three different diagnostic centers before confirmed. Early diagnosis of the disorder can diminish familial stress, speed up referral to special educational programs and influence family planning.
Autism spectrum disorders tend to be highly comorbid with other disorders. Comorbidity may increase with age and may worsen the course of youth with ASDs and make intervention/treatment more difficult. Distinguishing between ASDs and other diagnoses can be challenging, because the traits of ASDs often overlap with symptoms of other disorders, and the characteristics of ASDs make traditional diagnostic procedures difficult.
The most common medical condition occurring in individuals with autism spectrum disorders is seizure disorder or epilepsy, which occurs in 11-39% of individuals with ASD. Tuberous sclerosis, a medical condition in which non-malignant tumors grow in the brain and on other vital organs, occurs in 1-4% of individuals with ASDs.
Intellectual disabilities are some of the most common comorbid disorders with ASDs. Recent estimates suggest that 40-69% of individuals with ASD have some degree of an intellectual disability, more likely to be severe for females. A number of genetic syndromes causing intellectual disability may also be comorbid with ASD, including fragile X syndrome, Down syndrome, Prader-Willi and Angelman syndromes, and Williams syndrome.
Learning disabilities are also highly comorbid in individuals with an ASD. Approximately 25-75% of individuals with an ASD also have some degree of a learning disability.
Various anxiety disorders tend to co-occur with autism spectrum disorders, with overall comorbidity rates of 7-84%. Rates of comorbid depression in individuals with an ASD range from 4–58%. The relationship between ASD and schizophrenia remains a controversial subject under continued investigation, and recent meta-analyses have examined genetic, environmental, infectious, and immune risk factors that may be shared between the two conditions.
Deficits in ASD are often linked to behavior problems, such as difficulties following directions, being cooperative, and doing things on other people's terms. Symptoms similar to those of attention deficit hyperactivity disorder (ADHD) can be part of an ASD diagnosis.
Sensory processing disorder is also comorbid with ASD, with comorbidity rates of 42–88%.
Cases are typically diagnosed by 35 months of age, much earlier than those of Asperger syndrome. This phenomenon is most likely due to the early delay in speech and language. While there is no single accepted standard diagnostic measure for HFA, one of the most commonly used tools for early detection is the Social Communication Questionnaire. If the results of the test indicate an autism spectrum disorder, a comprehensive evaluation may lead to the diagnosis of HFA. Some characteristics used to diagnose an individual with autism include a lack of eye contact, pointing, and deficits in social interactions. The Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule are two evaluations utilized in the standard diagnosis process.
There are two classifications of different social interaction styles associated with HFA. The first is an active-but-odd social interaction style classified by ADHD symptoms, poor executive functioning, and psychosocial problems. The difficulty controlling impulses could cause the active-but-odd social behaviors present in some children with HFA. The second social interaction type is a passive style. This aloof style is characterized by a lack of social initiations and could possibly be caused by social anxiety.
Sensory processing disorder since 1994 is accepted in the Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC:0-3R) and is not recognized as a mental disorder in medical manuals such as the ICD-10 or the DSM-5.
Diagnosis is primarily arrived at by the use of standardized tests, standardized questionnaires, expert observational scales, and free play observation at an occupational therapy gym. Observation of functional activities might be carried at school and home as well. Some scales that are not exclusively used in SPD evaluations are used to measure visual perception, function, neurology and motor skills.
Depending on the country, diagnosis is made by different professionals, such as occupational therapists, psychologists, learning specialists, physiotherapists and/or speech and language therapists. In some countries it is recommended to have a full psychological and neurological evaluation if symptoms are too severe.
Nonverbal learning disorder (also known as nonverbal learning disability, NLD, or NVLD) is a learning disorder characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. It is sometimes confused with Asperger Syndrome or high IQ. Nonverbal learning disorder has never been included in the American Psychiatric Association's "Diagnostic and Statistical Manual of Mental Disorders" or the World Health Organization's "International Classification of Diseases".
Pragmatic language impairment (PLI), or social (pragmatic) communication disorder (SCD), is an impairment in understanding pragmatic aspects of language. This type of impairment was previously called semantic-pragmatic disorder (SPD). People with these impairments have special challenges with the semantic aspect of language (the meaning of what is being said) and the pragmatics of language (using language appropriately in social situations). It is assumed that those with autism have difficulty with "the meaning of what is being said" due to different ways of responding to social situations.
PLI is now a diagnosis in DSM-5, and is called social (pragmatic) communication disorder. Communication problems are also part of the autism spectrum disorders (ASD); however, the latter also show a restricted pattern of behavior, according to behavioral psychology. The diagnosis SCD can only be given if ASD has been ruled out.
Considered to be neurologically based, nonverbal learning disorder is characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. People with this disorder may not at times comprehend nonverbal cues such as facial expression or tone of voice. Challenges with mathematics and handwriting are common.
While various nonverbal impairments were recognized since early studies in child neurology, there is ongoing debate as to whether/or the extent to which existing conceptions of NLD provide a valid diagnostic framework. As originally presented "nonverbal disabilities" (p. 44) or "disorders of nonverbal learning" (p. 272) was a category encompassing non-linguistic learning problems (Johnson and Myklebust, 1967). "Nonverbal learning disabilities" were further discussed by Myklebust in 1975 as representing a subtype of learning disability with a range of presentations involving "mainly visual cognitive processing," social imperception, a gap between higher verbal ability and lower performance IQ, as well as difficulty with handwriting. Later neuropsychologist Byron Rourke sought to develop consistent criteria with a theory and model of brain functioning that would establish NLD as a distinct syndrome (1989).
Questions remain about how best to frame the perceptual, cognitive and motor issues associated with NLD.
The DSM-5 (Diagnostic and Statistical Manual) and ICD-10 (International Classification of Diseases) do not include NLD as a diagnosis.
Assorted diagnoses have been discussed as sharing symptoms with NLD—these conditions include Right hemisphere brain damage and Developmental Right Hemisphere Syndrome, Developmental Coordination Disorder, Social-Emotional Processing Disorder, Asperger syndrome, Gerstmann syndrome and others.
Labels for specific associated issues include visual-spatial deficit, dyscalculia, dysgraphia, as well as dyspraxia.
In their 1967 book "Learning Disabilities; Educational Principles and Practices", Doris J. Johnson and Helmer R. Myklebust characterize how someone with these kinds of disabilities appears in a classroom: "An example is the child who fails to learn the meaning of the actions of others...We categorize this child as having a deficiency in social perception, meaning that he has an inability which precludes acquiring the significance of basic nonverbal aspects of daily living, though his verbal level of intelligence falls within or above the average." (p. 272). In their chapter "Nonverbal Disorders Of Learning" (p. 272-306) are sections titled "Learning Though Pictures," (274) "Gesture," (281) "Nonverbal Motor Learning," (282) "Body Image," (285) "Spatial Orientation," (290) "Right-Left Orientation," (292) "Social Imperception," (295) "Distractibility, Perseveration, and Disinhibition." (298)