Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
In general, idic(15) occurs de novo but the parents must be karyotyped to make sure it is not inherited, mostly because this will affect the course of genetic counseling given to the family. If the abnormality is found prenatally and one of the parents harbour the marker, the child has a chance of not carrying the mutation. Further tests should however be done to prove the marker has not been rearranged while being inherited. This information is also necessary for counseling of future pregnancies. Each family is unique and should therefore be handled individually.
The extra chromosome in people with idic(15) can be easily detected through chromosome analysis (karyotyping). Additional tests are usually required. FISH (Fluorescent in situ hybridization) is used to confirm the diagnosis by distinguishing idic(15) from other supernumerary marker chromosomes. Array CGH can be used to determine the gene content and magnitude of copy number variation so that the clinical picture can be foreseen.
Interstitial duplications of chromosome 15 can be more difficult to detect on a routine chromosome analysis but are clearly identifiable using a 15q FISH study. Families should always discuss the results of chromosome and FISH studies with a genetic counselor or other genetics professionals to ensure accurate interpretation.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
The duplication involved in PTLS is usually large enough to be detected through G-banding alone, though there is a high false negative rate. To ascertain the diagnosis when karyotyping results are unclear or negative, more sophisticated techniques such as subtelomeric fluorescent in-situ hybridization analysis and array comparative genomic hybridization (aCGH) may be used.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
MRI imaging can be used to detect whether the abducens nerve is present.
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
The constellation of anomalies seen with Nasodigitoacoustic syndrome result in a distinct diagnosis. The diagnostic criteria for the disorder are broad distal phalanges of the thumbs and big toes, accompanied by a broad and shortened nose, sensorineural hearing loss and developmental delay, with predominant occurrence in males.
Genetic testing methods such as fluorescence in situ hybridization (FISH) and chromosomal microarray are available for diagnosing Dup15q syndrome and similar genetic disorders.
With the increase in genetic testing availability, more often duplications outside of the 15q11.2-13.1 region are being diagnosed. The global chromosome 15q11.2-13.1 duplication syndrome specific groups only provide medical information and research for chromosome 15q11.2-13.1 duplication syndrome and not the outlying 15q duplications.
Nasodigitoacoustic syndrome is similar to several syndromes that share its features. Brachydactyly of the distal phalanges, sensorineural deafness and pulmonary stenosis are common with Keutel syndrome. In Muenke syndrome, developmental delay, distal brachydactyly and sensorineural hearing loss are reported; features of Teunissen-Cremers syndrome include nasal aberrations and broadness of the thumbs and big toes, also with brachydactyly. Broad thumbs and big toes are primary characteristics of Rubinstein syndrome.
Several researchers around the world are studying on the subject of 1q21.1 duplication syndrome. The syndrome was identified for the first time in people with heart abnormalities. The syndrome was later observed in patients who had autism or schizophrenia.
It appears that there is a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen, while they are searching for the opposite.
Statistical research showed that schizophrenia is significantly more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Similar observations were done for chromosome 16 on 16p11.2 (deletion: autism/duplication: schizophrenia), chromosome 22 on 22q11.21 (deletion (Velo-cardio-facial syndrome): schizophrenia/duplication: autism) and 22q13.3 (deletion (Phelan-McDermid syndrome): schizophrenia/duplication: autism). Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10-12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It is assumed that a deletion or a duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
A clinical diagnosis of SCS can be verified by testing the TWIST1 gene (only gene in which mutations are known to cause SCS) for mutations using DNA analysis, such as sequence analysis, deletion/duplication analysis, and cytogenetics/ FISH analysis. Sequence analysis of exon 1 (TWIST1 coding region) provides a good method for detecting the frequency of mutations in the TWIST1 gene. These mutations include nonsense, missense, splice site mutation, and intragenic deletions/insertions. Deletion/duplication analysis identifies mutations in the TWIST1 gene that are not readily detected by sequence analysis. Common methods include PCR, multiplex ligation-dependent probe amplification (MLPA), and chromosomal microarray (CMA). Cytogenetic/FISH analysis attaches fluorescently labels DNA markers to a denatured chromosome and is then examined under fluorescent lighting, which reveals mutations caused by translocations or inversions involving 7p21. Occasionally, individuals with SCS have a chromosome translocation, inversion, or ring chromosome 7 involving 7p21 resulting in atypical findings, such as, increased developmental delay. Individuals with SCS, typically have normal brain functioning and rarely have mental impairments. For this reason, if an individual has both SCS and mental retardation, then they should have their TWIST1 gene screened more carefully because this is not a normal trait of SCS. Cytogenetic testing and direct gene testing can also be used to study gene/chromosome defects. Cytogenetic testing is the study of chromosomes to detect gains or losses of chromosomes or chromosome segments using fluorescent in situ hybridization (FISH) and/or comparative genomic hybridization (CGH). Direct gene testing uses blood, hair, skin, amniotic fluid, or other tissues in order to find genetic disorders. Direct gene testing can determine whether an individual has SCS by testing the individual's blood for mutations in the TWIST1 gene.
On several locations in the world people are studying on the subject of 1q21.1 deletion syndrome. The syndrome was identified for the first time with people with heart abnormalities. The syndrome has later been found with patients with autism and schizophrenia. Research is done on patients with a symptom of the syndrome, to find more patients with the syndrome.
There may be a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen.
Statistical research showed that schizophrenia is more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10–12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It has been proposed that a deletion or duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area, it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
Research on the genes CHD1L and PRKAB2 within lymphoblast cells lead to the conclusion that anomalies appear with the 1q21.1-deletionsyndrome:
- CHD1L is an enzyme which is involved in untangling the chromatides and the DNA repair system. With 1q21.1 deletion syndrome a disturbance occurs, which leads to increased DNA breaks. The role of CHD1L is similar to that of helicase with the Werner syndrome
- PRKAB2 is involved in maintaining the energy level of cells. With 1q21.1-deletion syndrome this function was attenuated.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
A 'de novo'-situation appears in about 75% of the cases. In 25% of the cases, one of the parents is carrier of the syndrome, without any effect on the parent. Sometimes adults have mild problems with the syndrome. To find out whether either of the parents carries the syndrome, both parents have to be tested. In several cases, the syndrome was identified with the child, because of an autism disorder or another problem, and later it appeared that the parent was affected as well. The parent never knew about it up till the moment that the DNA-test proved the parent to be a carrier.
In families where both parents have been tested negative on the syndrome, chances on a second child with the syndrome are extremely low. If the syndrome was found in the family, chances on a second child with the syndrome are 50%, because the syndrome is autosomal dominant. The effect of the syndrome on the child cannot be predicted.
The syndrome can be detected with fluorescence in situ hybridization and Affymetrix GeneChip Operating Software.
For parents with a child with the syndrome, it is advisable to consult a physician before a next pregnancy and to do prenatal screening.
Although there is no cure for 13q deletion syndrome, symptoms can be managed, usually with the involvement of a neurologist, rehabilitation physician, occupational therapist, physiotherapist, psychotherapist, nutritionist, special education professional, and/or speech therapist. If the affected child's growth is particularly slow, growth hormone treatment can be used to augment growth. Plastic surgeries can repair cleft palates, and surgical repair or monitoring by a pediatric cardiologist can manage cardiac defects. Some skeletal, neurological, genitourinary, gastrointestinal, and ophthalmic abnormalities can be definitively treated with surgery. Endocrine abnormalities can often be managed medically. Special educators, speech and occupational therapists, and physiotherapists can help a child develop skills in and out of school.
The majority of 22q11 duplications are inherited often from a parent with a normal or near-normal phenotype. This is in sharp distinction to 22q11 deletion syndrome where about 90% of cases are caused by mutations that occur "de novo".
The most frequent reported symptoms in patients with duplication of 22q11.2 duplication syndrome are mental retardation/learning disabilility (97% of patients), delayed psychomotor development (67% of patients), growth retardation (63% of patients) and muscular hypotonia (43% of patients). However, these are common and relatively non-specific indications for cytogenetic analysis, and the extent to which the duplication of 22q11.2 causes these features is currently unknown. The duplication is frequently inherited from a normal parent, so it is clear that intellectual development can be normal.
Up until recently, experts frequently disagreed on whether a patient had SCS, Crouzon syndrome, isolated craniosynostosis, or some other disease because the symptoms are so closely related, they literally had no way of differentiating between all of them. However, we now have direct gene testing, which allows for a more definitive diagnosis because it allows them to be differentiated from each other based on which gene is mutated in each condition. The following is a list of conditions commonly confused/misdiagnosed for SCS, some of their symptoms, and which mutated gene each contains:
Freeman–Sheldon syndrome is a type of distal arthrogryposis, related to distal arthrogryposis type 1 (DA1). In 1996, more strict criteria for the diagnosis of Freeman–Sheldon syndrome were drawn up, assigning Freeman–Sheldon syndrome as distal arthrogryposis type 2A (DA2A).
On the whole, DA1 is the least severe; DA2B is more severe with additional features that respond less favourably to therapy. DA2A (Freeman–Sheldon syndrome) is the most severe of the three, with more abnormalities and greater resistance to therapy.
Freeman–Sheldon syndrome has been described as a type of congenital myopathy.
In March 2006, Stevenson et al. published strict diagnostic criteria for distal arthrogryposis type 2A (DA2A) or Freeman–Sheldon syndrome. These included two or more features of distal arthrogryposis: microstomia, whistling-face, nasolabial creases, and 'H-shaped' chin dimple.
Individuals with Dup15q syndrome are at high risk for epilepsy, autism, and intellectual disability. Motor impairments are very common in individuals with the disorder. Rates of epilepsy in children with isodicentric duplications are higher than in children with interstitial duplications. A majority of patients with either duplication type (isodicentric or interstitial) have a history of gastrointestinal problems.
A study at the University of California, Los Angeles (UCLA) of 13 children with Dup15q syndrome and 13 children with nonsyndromic ASD (i.e., autism not caused by a known genetic disorder) found that, compared to children with nonsyndromic autism, children with Dup15q had significantly lower autism severity as measured by the Autism Diagnostic Observation Schedule (ADOS) (all children in the study met diagnostic criteria for ASD). However, children with Dup15q syndrome had significantly greater motor impairment and impairment of daily living skills than children in the nonsyndromic ASD group. Within the Dup15q syndrome cohort, children with epilepsy had greater cognitive impairment.
Medical diagnosis is required. Clinical tests can be performed, as well as molecular genetic testing. The available tests include:
Sequence analysis of the entire coding region
- Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) - Sanger Sequencing: Diagnosis, Mutation Confirmation, Pre-symptomatic, Risk Assessment, Screening
- Craniosynostosis: Diagnosis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Mutation scanning of select exons
- Skeletal Dysplasia Panel: Diagnosis, Prognostic
Sequence analysis of select exons
- Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN, FGFR3): Diagnosis, Mutation Confirmation, Risk Assessment
- Severe Achondroplasia, Developmental Delay, Acanthosis Nigricans: Diagnosis, Mutation Confirmation
Deletion/duplication analysis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Life with SADDAN is manageable, although therapy, surgery, and lifelong doctor surveillance may be required.
8p23.1 duplication syndrome is a rare genetic disorder caused by a duplication of a region from human chromosome 8. This duplication syndrome has an estimated prevalence of 1 in 64,000 births and is the reciprocal of the 8p23.1 deletion syndrome. The 8p23.1 duplication is associated with a variable phenotype including one or more of speech delay, developmental delay, mild dysmorphism, with prominent forehead and arched eyebrows, and congenital heart disease (CHD).
One research priority is to determine the role and nature of malignant hyperthermia in FSS. Such knowledge would benefit possible surgical candidates and the anaesthesiology and surgical teams who would care for them. MH may also be triggered by stress in patients with muscular dystrophies. Much more research is warranted to evaluate this apparent relationship of idiopathic hyperpyrexia, MH, and stress. Further research is wanted to determine epidemiology of psychopathology in FSS and refine therapy protocols.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
The phenotypic data on 11 patients indicated that cases are not always ascertained for CHD but that CHD was the most common single feature found in 6 out of 11 individuals. Developmental delay and/or learning difficulties were found in 5 out of 11 cases, but one prenatal case was developing normally at 15 months of age (Case 1,). Three other prenatal cases could not yet be reliably assessed. A variable degree of facial dysmorphism was present in 5 out of 11 individuals. Partial toe syndactyly has been found in one mother and son diad and adrenal anomalies in two probands but not in the duplicated mother of one of them. The phenotype is compatible with independent adult life with varying degrees of support.
Duplication of the GATA4 transcription factor () is believed to underlie the congenital heart disease and other genes, common to the duplication and deletion syndromes, can be regarded as candidates for the 8p23.1 duplication syndrome. These include the SOX7 transcription factor () for both CHD and developmental delay and the TNKS gene () for behavioural difficulties. The diaphragmatic hernia found in the 8p23.1 deletion syndrome has not been found in the 8p23.1 duplication syndrome to date.
The duplication may be associated with copy number changes of the adjacent olfactory receptor/defensin repeats (ORDRs) that predispose to the 8p23.1 deletion and duplication syndromes. High total copy numbers of these repeats have been associated with predisposition to psoriasis and low copy number with predisposition to Crohn's disease.