Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Individuals with a history of high blood pressure, diabetes, and smoking are most susceptible to PION as they have a compromised system of blood vessel autoregulation. Hence, extra efforts may need to be taken for them in the form of careful or staged surgery or the controlling the anemia from blood loss (by administration of blood transfusions), and the careful maintenance of their blood pressure.
Once visual loss has occurred, it becomes more problematic, but there are reports of recovered vision if blood transfusions and agents that raise blood pressure are administered within hours.
Prompt diagnosis is critical, since the sudden blindness in the one eye is often followed, within days, by similar sudden blindness in the second eye. Treatment may prevent further damage (see below). Any patient diagnosed with non-arteritic AION over the age of 50 must be asked about the constitutional symptoms mentioned above. Furthermore, AION patients over the age of 75 should often be blood tested regardless.
Once NAION happens, it was thought that there was no accepted treatment to reverse the damage. However, a recent uncontrolled retrospective large study has shown that if patients are treated with large doses of corticosteroid therapy during the early stages of NAION, in eyes with initial visual acuity of 20/70 or worse, seen within 2 weeks of onset, there was visual acuity improvement in 70% in the treated group compared to 41% in the untreated group (odds ratio of improvement: 3.39; 95% CI:1.62, 7.11; p ¼ 0.001). That study and a natural history study on NAION (Ophthalmology 2008;115: 298–305.) showed that visual acuity can improve up to 6 months and not after that. To minimize the risk of further visual loss in the fellow eye or the same eye, it is essential to reduce the risk factors. Common sense dictates trying to control the cardiovascular risk factors for many reasons, including protection from this happening to the second eye. Sudden vision loss should lead to an ophthalmological consultation. If NAION is suspected, then ideally a neuro-ophthalmologist's consultation should be obtained.
A recent Cochrane Review sought to determine the extent of safety and efficacy of optic nerve decompression surgery for NAION, compared to other treatments, or no treatment. The one study included in the review found no improvements in visual acuity among patients who underwent surgery for NAION, and adverse events (pain, double vision) experienced by participants who underwent surgery.
There is much research currently underway looking at ways to protect the nerve (neuroprotection) or even regenerate new fibers within the optic nerve. So far there is no evidence in human studies that the so-called neuroprotectors have any beneficial effect in NAION.
However, there is a new current clinical trial for the treatment of NAION in the United States with plans to include sites in India, Israel, Germany and Australia (see NORDICclinicaltrials.com and https://clinicaltrials.gov/). This trial will test the use of a synthetic siRNA that blocks caspase 2, an important enzyme in the apoptosis cycle.
In addition to such research, patents have been applied for by Pfizer, The University of Southern California, Otsuka Pharmaceutical and other individual inventors for innovations related to the treatment of anterior ischemic optic neuropathy.
It is estimated that the incidence of AION is about 8,000/year in the U.S.
AAION requires urgent and critical intervention with a very long course of corticosteroids to prevent further damage. While this treatment is in itself problematic, non-treatment leads to bilateral blindness and strokes.
There is much research currently underway looking at ways to protect the nerve (neuroprotection) or even regenerate new fibers within the optic nerve.
Ischemic optic neuropathy (ION) is the loss of structure and function of a portion of the optic nerve due to obstruction of blood flow to the nerve (i.e. ischemia). Ischemic forms of optic neuropathy are typically classified as either anterior ischemic optic neuropathy or posterior ischemic optic neuropathy according to the part of the optic nerve that is affected. People affected will often complain of a loss of visual acuity and a visual field, the latter of which is usually in the superior or inferior field.
When ION occurs in patients below the age of 50 years old, other causes should be considered. Such as juvenile diabetes mellitus, antiphospholipid antibody-associated clotting disorders, collagen-vascular disease, and migraines. Rarely, complications of intraocular surgery or acute blood loss may cause an ischemic event in the optic nerve.
Anterior ION presents with sudden, painless visual loss developing over hours to days. Examination findings usually include decreased visual acuity, a visual field defect, color vision loss, a relative afferent pupillary defect, and a swollen optic nerve head. Posterior ION occurs arteritic, nonarteritic, and surgical settings. It is characterized by acute vision loss without initial disc edema, but with subsequent optic disc atrophy.
Although there is no recognized treatment that can reverse the visual loss. Upon recent reports, optic nerve health decompression may be beneficial for a select group of patients with a gradual decline in vision due to ION.
Retinopathy is diagnosed by an ophthalmologist or an optometrist during eye examination. Stereoscopic fundus photography is the gold standard for the diagnosis of retinopathy. Dilated fundoscopy, or direct visualization of the fundus, has been shown to be effective as well.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Optic neuritis is inflammation of the optic nerve, which is associated with swelling and destruction of the myelin sheath covering the optic nerve. Young adults, usually females, are most commonly affected. Symptoms of optic neuritis in the affected eye include pain on eye movement, sudden loss of vision, and decrease in color vision (especially reds). Optic neuritis, when combined with the presence of multiple demyelinating white matter brain lesions on MRI, is suspicious for multiple sclerosis.
Several causes and clinical courses are possible for the optic neuritis. It can be classified in:
- Single isolated optic neuritis (SION)
- relapsing isolated optic neuritis (RION)
- chronic relapsing inflammatory optic neuropathy (CRION)
- the neuromyelitis optica (NMO) spectrum disorder
- multiple sclerosis associated optic neuritis (MSON)
- unclassified optic neuritis (UCON) forms.
Medical examination of the optic nerve with an ophthalmoscope may reveal a swollen optic nerve, but the nerve may also appear normal. Presence of an afferent pupillary defect, decreased color vision, and visual field loss (often central) are suggestive of optic neuritis. Recovery of visual function is expected within 10 weeks. However, attacks may lead to permanent axonal loss and thinning of the retinal nerve fiber layer.
Optic neuropathy refers to damage to the optic nerve due to any cause. Damage and death of these nerve cells, or neurons, leads to characteristic features of optic neuropathy.
The main symptom is loss of vision, with colors appearing subtly washed out in the affected eye. On medical examination, the optic nerve head can be visualised by an ophthalmoscope. A pale disc is characteristic of long-standing optic neuropathy. In many cases, only one eye is affected and patients may not be aware of the loss of color vision until the doctor asks them to cover the healthy eye.
Optic neuropathy is often called optic atrophy, to describe the loss of some or most of the fibers of the optic nerve. In medicine, "atrophy" usually means "shrunken but capable of regrowth", so some argue that "optic atrophy" as a pathological term is somewhat misleading, and the term "optic neuropathy" should be used instead.
In short, optic atrophy is the end result of any disease that damages nerve cells anywhere between the retinal ganglion cells and the lateral geniculate body (anterior visual system).
Telemedicine programs are available that allow primary care clinics to take images using specially designed retinal imaging equipment which can then be shared electronically with specialists at other locations for review. In 2009, Community Health Center, Inc. implemented a telemedicine retinal screening program for low-income patients with diabetes as part of those patients annual visits at the Federally Qualified Health Center.
In most patients, optic disc drusen are an incidental finding. It is important to differentiate them from other conditions that present with optic disc elevation, especially papilledema, which could imply raised intracranial pressure or tumors. True papilledema may present with exudates or cotton-wool spots, unlike ODD. The optic disc margins are characteristically irregular in ODD but not blurred as there is no swelling of the retinal nerve fibers. Spontaneous venous pulsations are present in about 80 percent of patients with ODD, but absent in cases of true disc edema. Other causes of disc elevation clinicians must exclude may be: hyaloid traction, epipapillary glial tissue, myelinated nerve fibres, scleral infiltration, vitreopapillary traction and high hyperopia. Disorders associated with disc elevation include: Alagille syndrome, Down syndrome, Kenny-Caffey syndrome, Leber Hereditary Optic Neuropathy and linear nevus sebaceous syndrome.
Treatment consists of Anti-VEGF drugs like Lucentis or intravitreal steroid implant (Ozurdex) and Pan-Retinal Laser Photocoagulation usually. Underlying conditions also require treatment. Non-Ischemic CRVO has better visual prognosis than Ischemic CRVO.
A systematic review studied the effectiveness of the anti-VEGF drugs ranibizumab and pagatanib sodium for patients suffering from non-ischemic CRVO. Though there was a limited sample size, participants in both treatment groups showed improved visual acuity over 6 month periods, with no safety concerns.
Tissue biopsy is the gold standard. Macroscopically this reveals pale muscle tissue. Microscopically infarcted patches of myocytes. Necrotic muscle fibers are swollen and eosinophilic and lack striations and nuclei. Small-vessel walls are thickened and hyalinized, with luminal narrowing or complete occlusion. Biopsy cultures for bacteria, fungi, acid-fast bacilli and stains are negative in simple myonecrosis.
Creatine kinase may be normal or increased probably depending upon the stage of the condition when sampling is undertaken. ESR is elevated. Planar X-ray reveals soft tissue swelling and may potentially show gas within necrotic muscle, Bone scan may show non specific uptake later in the course. CT shows muscle oedema with preserved tissue planes (non-contrast enhancing). MRI is the exam of choice and shows increased signal on T2 weighted images within areas of muscle oedema. Contrast enhancement is helpful but must be weighed against the risk of Nephrogenic Systemic Fibrosis as many diabetics have underlying renal insufficiency. Arteriography reveals large and medium vessel arteriosclerosis occasionally with dye within the area of tissue infarction . Electromyography shows non specific focal changes.
MRI is the most sensitive imaging technique that can be used for diagnosing NBD. As for the parenchymal NBD, medical doctors mainly monitor the upper brainstem lesion. In fact, it is possible that lesions extends to thalamus and basal ganglia. Another advantage of using MRI is the ability to perform Diffusion-weighted imaging, or diffusion MRI. This technique is the most sensitive tool to image an acute infarct. In the case of NBD, Diffusion MRI can determine whether the lesion were due to cerebral infarction. In other words, it can distinguish NBD from non-NBD neural disease. When only spinal cord is affected by NBD, brain looks perfectly normal when scanned by MRI. Therefore, it is necessary to scan the spinal cord as well when diagnosing possible NBD involvement. As for the non-parenchymal NBD, venous sinus thrombosis can be detected.
The central retinal vein is the venous equivalent of the central retinal artery and, like that blood vessel, it can suffer from occlusion (central retinal vein occlusion, also CRVO), similar to that seen in ocular ischemic syndrome. Since the central retinal artery and vein are the sole source of blood supply and drainage for the retina, such occlusion can lead to severe damage to the retina and blindness, due to ischemia (restriction in blood supply) and edema (swelling).
It can also cause glaucoma.
Nonischemic CRVO is the milder form of the disease. It may progress to the more severe ischemic type.
Radiological examination of the temporal artery with ultrasound yields a halo sign.
Contrast-enhanced brain MRI and CT is generally negative in this disorder.
Recent studies have shown that 3T MRI using super high resolution imaging and contrast injection can non-invasively diagnose this disorder with high specificity and sensitivity.
Treatment includes supportive care with analgesics and anti-inflammatory agents. Exercise should be limited as it increases pain and extends the area of infarction. Symptoms usually resolve in weeks to months, but fifty percent of sufferers will experience relapse in either leg.
The gold standard for diagnosing temporal arteritis is biopsy, which involves removing a small part of the vessel under local anesthesia and examining it microscopically for giant cells infiltrating the tissue. Since the blood vessels are involved in a patchy pattern, there may be unaffected areas on the vessel and the biopsy might have been taken from these parts. Unilateral biopsy of a 1.5–3 cm length is 85-90% sensitive (1 cm is the minimum). A negative result does not definitively rule out the diagnosis. Characterised as intimal hyperplasia and medial granulomatous inflammation with elastic lamina fragmentation with a CD 4+ predominant T cell infiltrate, currently biopsy is only considered confirmatory for the clinical diagnosis, or one of the diagnostic criteria.
"...Despite its rarity, the patient's ethnic background and the typical radiographic findings should prompt the clinicians to include NBD in the differential diagnosis of optic neuritis and demyelinating disease in the young..."[5]. This quote indicates that even common symptoms such as headache should be recognized as the sign for possible NBD considering the patient's ethnic background.
Unstable angina is characterized by at least one of the following:
1. Occurs at rest or minimal exertion and usually lasts more than 20 minutes (if nitroglycerin is not administered)
2. Being severe (at least Canadian Cardiovascular Society Classification 3) and of new onset (i.e. within 1 month)
3. Occurs with a crescendo pattern (brought on by less activity, more severe, more prolonged or increased frequency than previously).
Fifty percent of people with unstable angina will have evidence of necrosis of the heart's muscular cells based on elevated cardiac serum markers such as creatine kinase isoenzyme (CK)-MB and troponin T or I, and thus have a diagnosis of non-ST elevation myocardial infarction.
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
Nitroglycerin can be used immediately to widen the coronary arteries and help increase blood flow to the heart. In addition, nitroglycerin causes peripheral venous and artery dilation reducing cardiac preload and afterload. These reductions allow for decreased stress on the heart and therefore lower the oxygen demand of the heart's muscle cells.
Antiplatelet drugs such as aspirin and clopidogrel can help reduce the progression of atherosclerotic plaque formation, as well as combining these with an anticoagulant such as a low molecular weight heparin.
EEG: Mostly nonspecific slowing and epileptiform activity arising from temporal lobes.