Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effect of mercury took some time – the latent period between ingestion and the first symptoms (typically paresthesia – numbness in the extremities) was between 16 and 38 days. Paresthesia was the predominant symptom in less serious cases. Worse cases included ataxia (typically loss of balance), blindness or reduced vision, and death resulting from central nervous system failure. Anywhere between 20 and 40 mg of mercury has been suggested as sufficient for paresthesia (between 0.5 and 0.8 mg/kg of body weight). On average, individuals affected consumed 20 kg or so of bread; the 73,000 tonnes provided would have been sufficient for over 3 million cases.
The hospital in Kirkuk received large numbers of patients with symptoms that doctors recognised from the 1960 outbreak. The first case of alkylmercury poisoning was admitted to hospital on 21 December. By 26 December, the hospital had issued a specific warning to the government. By January 1972, the government had started to strongly warn the populace about eating the grain, although dispatches did not mention the large numbers already ill. The Iraqi Army soon ordered disposal of the grain and eventually declared the death penalty for anyone found selling it. Farmers dumped their supplies wherever possible, and it soon got into the water supply (particularly the River Tigris), causing further problems. The government issued a news blackout and released little information about the outbreak.
The World Health Organization assisted the Iraqi government through the supply of drugs, analytical equipment and expertise. Many new treatments were tried, since existing methods for heavy metal poisoning were not particularly effective. Dimercaprol was administered to several patients, but caused rapid deterioration of their condition. It was ruled out as a treatment for this sort of poisoning following the outbreak. Polythiol resins, penicillamine and dimercaprol sulfonate all helped, but are believed to have been largely insignificant in overall recovery and outcomes. Dialysis was tested on a few patients late in the treatment period, but they showed no clinical improvement. The result of all treatments was varied, with some patients' blood mercury level being dramatically reduced, but a negligible effect in others. All patients received periods of treatment interspersed with lay periods; continuous treatment was suggested in future cases. Later treatment was less effective in reducing blood toxicity.
690 people from the Agano River basin have been certified as patients of Niigata Minamata disease.
Since the Niigata outbreak was the second recorded in Japan and occurred in the Lower Agano River Basin, it is sometimes called or . It is one of the Four Big Pollution Diseases of Japan.
6,530 patients were admitted to hospitals with poisoning, and 459 deaths reported. Cases reached a peak of hundreds per day in January, and had largely subsided by the beginning of March. The last admittance was on 27 March; admissions represented every age and gender stratum, although those under the age of ten represented a third of admitted cases. This number is "certainly an underestimate", because of the availability of hospital treatment, hospital overcrowding and lack of faith in treatment. In the most severely affected areas, prevalence was 28% and mortality was 21% of the cases. Some Iraqi doctors believe both the number of cases and fatalities are at least ten times too low, with perhaps 100,000 cases of brain damage. One suggested reason for the vast discrepancy between reported and estimated numbers of deaths is the Iraqi custom, common to large parts of the Middle East, for a person to die at home when possible. Home deaths would not have been recorded.
A large number of patients with minor symptoms recovered completely; those with more serious symptoms improved. This was in contrast to expected outcomes, largely based on analysis of Minamata disease in Japan. In boys with mercury levels below clinical poisoning, a reduction in school performance was noted, although this correlation could not be confirmed. In infants, the mercury poisoning caused central nervous system damage. Relatively low doses caused slower development in children, and abnormal reflexes. Different treatments for mercury poisoning have since been developed, and "quiet baby syndrome", characterised by a baby who never cries, is now a recognised symptom of methylmercury-induced brain damage. Ongoing recommendations of the food regulation authorities have focused on consumption by pregnant women and infant children, noting the particular susceptibility of fetuses and infants to methylmercury poisoning. Data from Iraq have confirmed that methylmercury can pass to a child "in utero", and mercury levels were equal to or higher in the newborn child than in the mother.
In 1974, a joint Food and Agriculture Organization (FAO) and World Health Organisation (WHO) meeting made several recommendations to prevent a similar outbreak. These included stressing the importance of labelling bags in the local language and with locally understood warning symbols. The possibility of an additive creating a strong bitter taste was studied. The meeting urged governments to strictly regulate methyl- and ethylmercury use in their respective countries, including limiting use to where no other reasonable alternative was available. It also recommended the involvement of the FAO and WHO in assisting national governments in regulation and enforcement, and the setting up of national poison control centres. Over 9–13 November, a Conference on Intoxication due to Alkylmercury-Treated Seed was held in Baghdad. It supported the recommendations of the FAO/WHO report and further suggested that local and national media should publicise outbreaks, including size and symptoms; it considered the distribution of this information crucial. It also laid out a general plan as to the collection of relevant information from the field and potential analysis for further investigation. It called on national governments to make use of WHO involvement whenever feasible, and absolved world governments in clear terms, saying that "No country should ever feel that any blame will attach to it for allowing an outbreak to occur".
Iraq now has the highest incidence of Parkinson's in the world. Parkinson's symptoms are very similar to mercury poisoning symptoms. Mercury that enters the brain has a half-life of 27.5 years and chelators are not able to remove it.
, sometimes referred to as , is a neurological syndrome caused by severe mercury poisoning. Symptoms include ataxia, numbness in the hands and feet, general muscle weakness, loss of peripheral vision, and damage to hearing and speech. In extreme cases, insanity, paralysis, coma, and death follow within weeks of the onset of symptoms. A congenital form of the disease can also affect fetuses in the womb.
Minamata disease was first discovered in Minamata city in Kumamoto prefecture, Japan, in 1956. It was caused by the release of methylmercury in the industrial wastewater from the Chisso Corporation's chemical factory, which continued from 1932 to 1968. This highly toxic chemical bioaccumulated in shellfish and fish in Minamata Bay and the Shiranui Sea, which, when eaten by the local populace, resulted in mercury poisoning. While cat, dog, pig, and human deaths continued for 36 years, the government and company did little to prevent the pollution. The animal effects were severe enough in cats that they came to be named as having "dancing cat fever".
As of March 2001, 2,265 victims had been officially recognised as having Minamata disease (1,784 of whom had died) and over 10,000 had received financial compensation from Chisso. By 2004, Chisso Corporation had paid $86 million in compensation, and in the same year was ordered to clean up its contamination. On March 29, 2010, a settlement was reached to compensate as-yet uncertified victims.
A second outbreak of Minamata disease occurred in Niigata Prefecture in 1965. The original Minamata disease and Niigata Minamata disease are considered two of the four big pollution diseases of Japan.
People are continually exposed to metals in the environment. Medical tests can detect metals often, but this is to be expected and alone is not evidence that a person is poisoned. Metal screening tests should not be used unless there is reason to believe that a person has had excessive exposure to metals. People should seek medical testing for poisoning only if they are concerned for a particular reason, and physicians should consider a patient's history and physical examination before conducting tests to detect metals.
Diagnosis of elemental or inorganic mercury poisoning involves determining the history of exposure, physical findings, and an elevated body burden of mercury. Although whole-blood mercury concentrations are typically less than 6 μg/L, diets rich in fish can result in blood mercury concentrations higher than 200 μg/L; it is not that useful to measure these levels for suspected cases of elemental or inorganic poisoning because of mercury's short half-life in the blood. If the exposure is chronic, urine levels can be obtained; 24-hour collections are more reliable than spot collections. It is difficult or impossible to interpret urine samples of patients undergoing chelation therapy, as the therapy itself increases mercury levels in the samples.
Diagnosis of organic mercury poisoning differs in that whole-blood or hair analysis is more reliable than urinary mercury levels.
Mercury thermometers and mercury light bulbs are not as common as they used to be, and the amount of mercury they contain is unlikely to be a health concern if handled carefully. However, broken items still require careful cleanup, as mercury can be hard to collect and it is easy to accidentally create a much larger exposure problem.
The second outbreak of Minamata disease in Niigata Prefecture was discovered in a very similar way to the original outbreak in Kumamoto Prefecture. From the autumn of 1964 to the spring of 1965, cats living along the banks of the Agano River had been seen to go mad and die: "...one cat ran into a small clay cooking stove containing burning charcoal. With the pupils of its eyes dilated, salivating, convulsing and uttering a strange cry, the cat breathed its last breath." These strange symptoms eventually began to appear in people, too. Professor Tadao Tsubaki of Niigata University examined two patients in April and May 1965 and suspected Minamata disease. One patient's hair was found to have a mercury level of 390 ppm. On 31 May, he reported an outbreak of organic mercury poisoning in the Agano River basin to the prefectural government and made his findings public on 12 June.
Chelation therapy is a medical procedure that involves the administration of chelating agents to remove heavy metals from the body. Chelating agents are molecules that have multiple electron-donating groups, which can form stable coordination complexes with metal ions. Complexation prevents the metal ions from reacting with molecules in the body, and enable them to be dissolved in blood and eliminated in urine. It should only be used in people who have a diagnosis of metal intoxication. That diagnosis should be validated with tests done in appropriate biological samples.
Chelation therapy is administered under very careful medical supervision due to various inherent risks. When the therapy is administered properly, the chelation drugs have significant side effects. Chelation administered inappropriately can cause neurodevelopmental toxicity, increase risk of developing cancer, and cause death; chelation also removes essential metal elements and requires measures to prevent their loss.
In humans, heavy metal poisoning is generally treated by the administration of chelating agents.
These are chemical compounds, such as (calcium disodium ethylenediaminetetraacetate) that convert heavy metals to chemically inert forms that can be excreted without further interaction with the body. Chelates are not without side effects and can also remove beneficial metals from the body. Vitamin and mineral supplements are sometimes co-administered for this reason.
Soils contaminated by heavy metals can be remediated by one or more of the following technologies: isolation; immobilization; toxicity reduction; physical separation; or extraction. "Isolation" involves the use of caps, membranes or below-ground barriers in an attempt to quarantine the contaminated soil. "Immobilization" aims to alter the properties of the soil so as to hinder the mobility of the heavy contaminants. "Toxicity reduction" attempts to oxidise or reduce the toxic heavy metal ions, via chemical or biological means into less toxic or mobile forms. "Physical separation" involves the removal of the contaminated soil and the separation of the metal contaminants by mechanical means. "Extraction" is an on or off-site process that uses chemicals, high-temperature volatization, or electrolysis to extract contaminants from soils. The process or processes used will vary according to contaminant and the characteristics of the site.
Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health. These elements include vanadium, manganese, iron, cobalt, copper, zinc, selenium, strontium and molybdenum. A deficiency of these essential metals may increase susceptibility to heavy metal poisoning.
Minamata disease remains an important issue in contemporary Japanese society. Lawsuits against Chisso and the prefectural and national governments are still continuing and many regard the government responses to date as inadequate. The company's "historical overview" in its current website makes no mention of their role in the mass contamination of Minamata and the dreadful aftermath. Their 2004 Annual Report however reports an equivalent of about US$50 million (5,820 million yen) in "Minamata Disease Compensation Liabilities". From 2000 to 2003, the company also reported total compensation liabilities of over US$170 million. Their 2000 accounts also show that the Japanese and Kumamoto prefectural governments waived an enormous US$560 million in related liabilities. Their FY2004 and FY2005 reports refer to Minamata disease as "mad hatter's disease", a term coined from the mercury poisoning experienced by hat-makers of the last few centuries (cf. Erethism).
A memorial service was held at the Minamata Disease Municipal Museum on 1 May 2006 to mark 50 years since the official discovery of the disease. Despite bad weather, the service was attended by over 600 people, including Chisso chairman Shunkichi Goto and Environment Minister Yuriko Koike.
On Monday, March 29, 2010, a group of 2,123 uncertified victims reached a settlement with the government of Japan, the Kumamoto Prefectural government, and Chisso Corporation to receive individual lump-sum payments of 2.1 million yen and monthly medical allowances.
Most congenital patients are now in their forties and fifties and their health is deteriorating. Their parents, who are often their only source of care, are into their seventies or eighties or already deceased. Often these patients find themselves tied to their own homes and the care of their family, effectively isolated from the local community. Some welfare facilities for patients do exist. One notable example is , a vocational training centre for congenital patients as well as other disabled people in the Minamata area. Hot House members are also involved in raising awareness of Minamata disease, often attending conferences and seminars as well as making regular visits to elementary schools throughout Kumamoto Prefecture.
Bright's disease was historically 'treated' with warm baths, blood-letting, squill, digitalis, mercuric compounds, opium, diuretics, laxatives, and dietary therapy, including abstinence from alcoholic drinks, cheese and red meat. Arnold Ehret was diagnosed with Bright's disease and pronounced incurable by 24 of Europe's most respected doctors; he designed "The Mucusless Diet Healing System", which apparently cured his illness. William Howard Hay, MD had the illness and, it is claimed, cured himself using the Hay diet.
The symptoms and signs of Bright's disease were first described in 1827 by the English physician Richard Bright, after whom the disease was named. In his "Reports of Medical Cases", he described 25 cases of dropsy (edema) which he attributed to kidney disease. Symptoms and signs included: inflammation of serous membranes, hemorrhages, apoplexy, convulsions, blindness and coma. Many of these cases were found to have albumin in their urine (detected by the spoon and candle-heat coagulation), and showed striking morbid changes of the kidneys at autopsy. The triad of dropsy, albumin in the urine and kidney disease came to be regarded as characteristic of Bright's disease. Subsequent work by Bright and others indicated an association with cardiac hypertrophy, which was attributed by Bright to stimulation of the heart. Subsequent work by Mahomed showed that a rise in blood pressure could precede the appearance of albumin in the urine, and the rise in blood pressure and increased resistance to flow was believed to explain the cardiac hypertrophy.
It is now known that Bright's disease is due to a wide range of diverse kidney diseases; thus, the term "Bright's disease" is retained strictly for historical application. The disease was diagnosed frequently in patients with diabetes; at least some of these cases would probably correspond to a modern diagnosis of diabetic nephropathy.
]
Disease mongering is a term for the practice of widening the diagnostic boundaries of illnesses and aggressively promoting their public awareness in order to expand the markets for treatment.
Among the entities benefiting from selling and delivering treatments are pharmaceutical companies, physicians, alternative practitioners and other professional or consumer organizations. It is distinct from the promulgation of bogus or unrecognised diagnoses.
The term “monger” has ancient roots, providing the basis for many common compound forms such as cheesemonger, fishmonger, and fleshmonger for those who peddle such wares respectively. “Disease mongering” as a label for the "invention" or promotion of diseases in order to capitalize on their treatment was first used in 1992 by health writer Lynn Payer, who applied it to the Listerine mouthwash campaign against halitosis (bad breath).
Payer defined disease mongering as a set of practices which include the following:
- Stating that normal human experiences are abnormal and in need of treatment
- Claiming to recognize suffering which is not present
- Defining a disease such that a large number of people have it
- Defining a disease's cause as some ambiguous deficiency or hormonal imbalance
- Associating a disease with a public relations spin campaign
- Directing the framing of public discussion of a disease
- Intentionally misusing statistics to exaggerate treatment benefits
- Setting a dubious clinical endpoint in research
- Advertising a treatment as without side effect
- Advertising a common symptom as a serious disease
The incidence of conditions not previously defined as illness being medicalised as "diseases" is difficult to scientifically assess due to the inherent social and political nature of the definition of what constitutes a disease, and what aspects of the human condition should be managed according to a medical model. For example, halitosis, the condition which prompted Payer to coin the phrase "disease mongering", isn't merely an imagined social stigma but can stem from any of a wide spectrum of conditions spanning from bacterial infection of the gums to kidney failure, and is recognized by the Scientific Council of the American Dental Association as "a recognizable condition which deserves professional attention".
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
The twins require the use of wheelchairs for mobility and are unable to speak without the assistance of electronic speaking aids. They experience persistent and painful muscle spasms which are worsened by emotional distress. They are currently living with their parents, with the assistance of hospice workers. Doctors continue to administer tests to the twins in search of a treatment.
It is done through isolation of a bacteria from chickens suspected to have history of coryza and clinical finds from infected chickens also is used in the disease diagnosis. Polymerase chain reaction is a reliable means of diagnosis of the disease
The diagnosis is clinical, not based upon serology. At least seven sets of diagnostic criteria have been devised, however the Yamaguchi criteria have the highest sensitivity. Diagnosis requires at least five features, with at least two of these being major diagnostic criteria.
Fabry disease is suspected based on the individual's clinical presentation, and can be diagnosed by an enzyme assay (usually done on leukocytes) to measure the level of alpha-galactosidase activity. An enzyme assay is not reliable for the diagnosis of disease in females due to the random nature of X-inactivation. Molecular genetic analysis of the "GLA" gene is the most accurate method of diagnosis in females, particularly if the mutations have already been identified in male family members. Many disease-causing mutations have been noted. Kidney biopsy may also be suggestive of Fabry disease if excessive lipid buildup is noted. Pediatricians, as well as internists, commonly misdiagnose Fabry disease.
Common clinical signs and symptoms of Whipple's disease include diarrhea, steatorrhea, abdominal pain, weight loss, migratory arthropathy, fever, and neurological symptoms. Weight loss and diarrhea are the most common symptoms that lead to identification of the process, but may be preceded by chronic, unexplained, relapsing episodes of non-destructive seronegative arthritis, often of large joints.
Diagnosis is made by biopsy, usually by duodenal endoscopy, which reveals PAS-positive macrophages in the lamina propria containing non-acid-fast gram-positive bacilli. Immunohistochemical staining for antibodies against "T. whipplei" has been used to detect the organism in a variety of tissues, and a PCR-based assay is also available. PCR can be confirmatory if performed on blood, vitreous fluid, synovial fluid, heart valves, or cerebrospinal fluid. PCR of saliva, gastric or intestinal fluid, and stool specimens is highly sensitive, but not specific enough, indicating that healthy individuals can also harbor the causative bacterium without the manifestation of Whipple's disease, but that a negative PCR is most likely indicative of a healthy individual.
Endoscopy of the duodenum and jejunum can reveal pale yellow shaggy mucosa with erythematous eroded patches in patients with classic intestinal Whipple's disease, and small bowel X-rays may show some thickened folds. Other pathological findings may include enlarged mesenteric lymph nodes, hypercellularity of lamina propria with "foamy macrophages", and a concurrent decreased number of lymphocytes and plasma cells, per high power field view of the biopsy.
A D-Xylose test can be performed, which is where the patient will consume 4.5g of D-xylose, a sugar, by mouth. The urine excretion of D-Xylose is then measured after 5 hours. The majority of D-Xylose is absorbed normally, and should be found in the urine. If the D-Xylose is found to be low in the urine, this suggests an intestinal malabsorption problem such as bacterial overgrowth of the proximal small intestine, Whipple's Disease, or an autoimmune with diseases such as Celiac's Disease (allergy to gluten) or Crohn's Disease (autoimmune disease affecting the small intestine). With empiric antibiotic treatment after an initial positive D-Xylose test, and if a follow-up D-Xylose test is positive (decreased urine excretion) after antibiotic therapy, then this would signify it is not bacterial overgrowth of the proximal small intestine. Since Whipple's disease is so rare, a follow-up positive D-Xylose test more likely indicates a non-infectious etiology and more likely an autoimmune etiology. Clinical correlation is recommended to rule out Whipple's disease.
Amniocentesis or chorionic villus sampling can be used to screen for the disease before birth. After birth, urine tests, along with blood tests and skin biopsies can be used to diagnose Schindler disease. Genetic testing is also always an option, since different forms of Schindler disease have been mapped to the same gene on chromosome 22; though different changes (mutations) of this gene are responsible for the infantile- and adult-onset forms of the disease.
The disease appears to be progressive in nature. The Fields twins started having problems when they were four years old. By the time they had reached the age of nine, they were having difficulty walking and needed frames to assist them with walking. Their muscles have been gradually deteriorating over time. The disease affects the twins' nerves, causing them to make involuntary muscle movements such as trembling in the hands.
The extent of the disease is still unknown as the two women are only 21. However, the disease has had no apparent effect on their brains or personalities. Doctors do not know if the disease is fatal and, if so, what the life expectancy of one with this disease is. If the cause of the disease is genetic, there is a chance that the twins could pass it on to their future children.