Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
The Ishihara color test, which consists of a series of pictures of colored spots, is the test most often used to diagnose red–green color deficiencies. A figure (usually one or more Arabic digits) is embedded in the picture as a number of spots in a slightly different color, and can be seen with normal color vision, but not with a particular color defect. The full set of tests has a variety of figure/background color combinations, and enable diagnosis of which particular visual defect is present. The anomaloscope, described above, is also used in diagnosing anomalous trichromacy.
Because the Ishihara color test contains only numerals, it may not be useful in diagnosing young children, who have not yet learned to use numerals. In the interest of identifying these problems early on in life, alternative color vision tests were developed using only symbols (square, circle, car).
Besides the Ishihara color test, the US Navy and US Army also allow testing with the Farnsworth Lantern Test. This test allows 30% of color deficient individuals, whose deficiency is not too severe, to pass.
Another test used by clinicians to measure chromatic discrimination is the Farnsworth-Munsell 100 hue test. The patient is asked to arrange a set of colored caps or chips to form a gradual transition of color between two anchor caps.
The HRR color test (developed by Hardy, Rand, and Rittler) is a red–green color test that, unlike the Ishihara, also has plates for the detection of the tritan defects.
Most clinical tests are designed to be fast, simple, and effective at identifying broad categories of color blindness. In academic studies of color blindness, on the other hand, there is more interest in developing flexible tests to collect thorough datasets, identify copunctal points, and measure just noticeable differences.
It is important that people be examined by someone specializing in low vision care prior to other rehabilitation training to rule out potential medical or surgical correction for the problem and to establish a careful baseline refraction and prescription of both normal and low vision glasses and optical aids. Only a doctor is qualified to evaluate visual functioning of a compromised visual system effectively. The American Medical Association provides an approach to evaluating visual loss as it affects an individual's ability to perform activities of daily living.
Screening adults who have no symptoms is of uncertain benefit.
Optometrists can supply colored spectacle lenses or a single red-tint contact lens to wear on the non-dominant eye, but although this may improve discrimination of some colors, it can make other colors more difficult to distinguish. A 1981 review of various studies to evaluate the effect of the X-chrom contact lens concluded that, while the lens may allow the wearer to achieve a better score on certain color vision tests, it did not correct color vision in the natural environment. A case history using the X-Chrom lens for a rod monochromat is reported and an X-Chrom manual is online.
Lenses that filter certain wavelengths of light can allow people with a cone anomaly, but not dichromacy, to see better separation of colors, especially those with classic "red/green" color blindness. They work by notching out wavelengths that strongly stimulate both red and green cones in a deuter- or protanomalous person, improving the distinction between the two cones' signals. As of 2013, sunglasses that notch out color wavelengths are available commercially.
The diagnosis of childhood blindness is done via methods to ascertain the degree of visual impairment in the affected child doing so via "dilating eye drops" and the proceeding eye exam.
Visual impairment has the ability to create consequences for health and well being. Visual impairment is increasing especially among older people. It is recognized that those individuals with visual impairment are likely to have limited access to information and healthcare facilities, and may not receive the best care possible because not all health care professionals are aware of specific needs related to vision.
- A prerequisite of effective health care could very well be having staff that are aware that people may have problems with vision.
- Communication and different ways of being able to communicate with visually impaired clients must be tailored to individual needs and available at all times.
Braille is a universal way to learn how to read and write, for the blind. A refreshable braille display is an assistive learning device that can help such children in school. Schools for the blind are a form of management, however the limitations of using studies done in such schools has been recognized. Children that are enrolled presently, usually, had developed blindness 5 or more years prior to enrollment, consequently not reflecting current possible causes. About 66% of children with visual impairment also have one other disability (comorbidity), be it, intellectual disabilities, cerebral palsy, or hearing loss. Eye care/screening for children within primary health care is important as catching ocular disease issues can lead to better outcomes.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Serious complications of cataract surgery include retinal detachment and endophthalmitis. In both cases, patients notice a sudden decrease in vision. In endophthalmitis, patients often describe pain. Retinal detachment frequently presents with unilateral visual field defects, blurring of vision, flashes of light, or floating spots.
The risk of retinal detachment was estimated as about 0.4% within 5.5 years, corresponding to a 2.3-fold risk increase compared to naturally expected incidence, with older studies reporting a substantially higher risk. The incidence is increasing over time in a somewhat linear manner, and the risk increase lasts for at least 20 years after the procedure. Particular risk factors are younger age, male sex, longer axial length, and complications during surgery. In the highest risk group of patients, the incidence of pseudophakic retinal detachment may be as high as 20%.
The risk of endophthalmitis occurring after surgery is less than one in 1000.
Corneal edema and cystoid macular edema are less serious but more common, and occur because of persistent swelling at the front of the eye in corneal edema or back of the eye in cystoid macular edema. They are normally the result of excessive inflammation following surgery, and in both cases, patients may notice blurred, foggy vision. They normally improve with time and with application of anti-inflammatory drops. The risk of either occurring is around one in 100. It is unclear whether NSAIDs or corticosteroids are superior at reducing postoperative inflammation.
Posterior capsular opacification, also known as after-cataract, is a condition in which months or years after successful cataract surgery, vision deteriorates or problems with glare and light scattering recur, usually due to thickening of the back or posterior capsule surrounding the implanted lens, so-called 'posterior lens capsule opacification'. Growth of natural lens cells remaining after the natural lens was removed may be the cause, and the younger the patient, the greater the chance of this occurring. Management involves cutting a small, circular area in the posterior capsule with targeted beams of energy from a laser, called capsulotomy, after the type of laser used. The laser can be aimed very accurately, and the small part of the capsule which is cut falls harmlessly to the bottom of the inside of the eye. This procedure leaves sufficient capsule to hold the lens in place, but removes enough to allow light to pass directly through to the retina. Serious side effects are rare. Posterior capsular opacification is common and occurs following up to one in four operations, but these rates are decreasing following the introduction of modern intraocular lenses together with a better understanding of the causes.
Vitreous touch syndrome is a possible complication of intracapsular cataract extraction.
Although there has been extensive research in the past decades on this disease, there is still no evidence based therapies for this condition. This condition is often diagnosed at an early age; usually as a teenager or young adult.
To make a specific diagnosis, intraocular fluid samples may be taken and sent for analysis. In some cases, blood or cerebrospinal fluid (CSF) are also tested. Imaging may be done to help make the diagnosis.
There is generally no treatment to cure achromatopsia. However, dark red or plum colored filters are very helpful in controlling light sensitivity.
Since 2003, there is a cybernetic device called eyeborg that allows people to perceive color through sound waves. Achromatopsic artist Neil Harbisson was the first to use such a device in early 2004, the eyeborg allowed him to start painting in color by memorizing the sound of each color.
Moreover, there is some research on gene therapy for animals with achromatopsia, with positive results on mice and young dogs, but less effectiveness on older dogs. However, no experiments have been made on humans. There are many challenges to conducting gene therapy on humans. See Gene therapy for color blindness for more details about it.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
An accurate diagnosis of retinitis pigmentosa relies on the documentation of the progressive loss photoreceptor cell function, confirmed by a combination of visual field and visual acuity tests, fundus and optical coherence imagery, and electroretinography (ERG),
Visual field and acuity tests measure and compare the size of the patient's field of vision and the clarity of their visual perception with the standard visual measurements associated with healthy 20/20 vision. Clinical diagnostic features indicative of retinitis pigmentosa include a substantially small and progressively decreasing visual area in the visual field test, and compromised levels of clarity measured during the visual acuity test. Additionally, optical tomography such as fundus and retinal (optical coherence) imagery provide further diagnostic tools when determining an RP diagnosis. Photographing the back of the dilated eye allows the confirmation of bone spicule accumulation in the fundus, which presents during the later stages of RP retinal degeneration. Combined with cross-sectional imagery of optical coherence tomography, which provides clues into photoreceptor thickness, retinal layer morphology, and retinal pigment epithelium physiology, fundus imagery can help determine the state of RP progression.
While visual field and acuity test results combined with retinal imagery support the diagnosis of retinitis pigmentosa, additional testing is necessary to confirm other pathological features of this disease. Electroretinography (ERG) confirms the RP diagnosis by evaluating functional aspects associated with photoreceptor degeneration, and can detect physiological abnormalities before the initial manifestation of symptoms. An electrode lens is applied to the eye as photoreceptor response to varying degrees of quick light pulses is measured. Patients exhibiting the retinitis pigmentosa phenotype would show decreased or delayed electrical response in the rod photoreceptors, as well as possibly compromised cone photoreceptor cell response.
The patient's family history is also considered when determining a diagnosis due to the genetic mode of inheritance of retinitis pigmentosa. At least 35 different genes or loci are known to cause "nonsyndromic RP" (RP that is not the result of another disease or part of a wider syndrome). Indications of the RP mutation type can be determine through DNA testing, which is available on a clinical basis for:
- (autosomal recessive, Bothnia type RP)
- (autosomal dominant, RP1)
- (autosomal dominant, RP4)
- (autosomal dominant, RP7)
- (autosomal dominant, RP13)
- (autosomal dominant, RP18)
- CRB1 (autosomal recessive, RP12)
- (autosomal recessive, RP19)
- (autosomal recessive, RP20)
For all other genes (e.g. DHDDS), molecular genetic testing is available on a research basis only.
RP can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. X-linked RP can be either recessive, affecting primarily only males, or dominant, affecting both males and females, although males are usually more mildly affected. Some digenic (controlled by two genes) and mitochondrial forms have also been described.
Genetic counseling depends on an accurate diagnosis, determination of the mode of inheritance in each family, and results of molecular genetic testing.
There are two types of retinitis: Retinitis pigmentosa (RP) and cytomegalovirus (CMV) retinitis. Both conditions result in the swelling and damage to the retinitis. However, the key difference in both these conditions is that Retinitis pigmentosa is a genetic eye disease that you inherit from one or both of your parents. On the other hand, CMV retinitis develops from a viral infection in the retina. Although there is no cure for this disease, there are steps you can take to protect your eyes from worsening. Supplements can slow the progression of the disease and alleviate symptoms temporarily. Research also shows that vitamin A, lutein, and omega-3 fatty acids also help alleviate symptoms.
A diagnosis of choroideremia can be made based on family history, symptoms, and the characteristic appearance of the fundus. However, choroideremia shares several clinical features with retinitis pigmentosa, a similar but broader group of retinal degenerative diseases, making a specific diagnosis difficult without genetic testing. Because of this choroideremia is often initially misdiagnosed as retinitis pigmentosa. A variety of different genetic testing techniques can be used to make a differential diagnosis.
Nyctalopia (from Greek νύκτ-, "nykt-" "night"; ἀλαός, "alaos" "blind, not seeing", and ὄψ, "ops" "eye"), also called night-blindness, is a condition making it difficult or impossible to see in relatively low light. It is a symptom of several eye diseases. Night blindness may exist from birth, or be caused by injury or malnutrition (for example, vitamin A deficiency). It can be described as insufficient adaptation to darkness.
The most common cause of nyctalopia is retinitis pigmentosa, a disorder in which the rod cells in the retina gradually lose their ability to respond to the light. Patients suffering from this genetic condition have progressive nyctalopia and eventually their daytime vision may also be affected. In X-linked congenital stationary night blindness, from birth the rods either do not work at all, or work very little, but the condition doesn't get worse.
Another cause of night blindness is a deficiency of retinol, or vitamin A, found in fish oils, liver and dairy products.
The opposite problem, the inability to see in bright light, is known as "hemeralopia" and is much rarer.
Since the outer area of the retina is made up of more rods than cones, loss of peripheral vision often results in night blindness. Individuals suffering from night blindness not only see poorly at night, but also require extra time for their eyes to adjust from brightly lit areas to dim ones. Contrast vision may also be greatly reduced.
Rods contain a receptor-protein called rhodopsin. When light falls on rhodopsin, it undergoes a series of conformational changes ultimately generating electrical signals which are carried to the brain via the optic nerve. In the absence of light, rhodopsin is regenerated. The body synthesizes rhodopsin from vitamin A, which is why a deficiency in vitamin A causes poor night vision.
Refractive "vision correction" surgery (especially PRK with the complication of "haze") may rarely cause a reduction in best night-time acuity due to the impairment of contrast sensitivity function (CSF) which is induced by intraocular light-scatter resulting from surgical intervention in the natural structural integrity of the cornea.
Progressive vision loss in any dog in the absence of canine glaucoma or cataracts can be an indication of PRA. It usually starts with decreased vision at night, or nyctalopia. Other symptoms include dilated pupils and decreased pupillary light reflex. Fundoscopy to examine the retina will show shrinking of the blood vessels, decreased pigmentation of the nontapetal fundus, increased reflection from the tapetum due to thinning of the retina, and later in the disease a darkened, atrophied optic disc. Secondary cataract formation in the posterior portion of the lens can occur late in the disease. In these cases diagnosis of PRA may require electroretinography (ERG). For many breeds there are specific genetic tests of blood or buccal mucosa for PRA.
Absent a genetic test, animals of breeds susceptible to PRA can be cleared of the disease only by the passage of time—that is, by living past the age at which PRA symptoms are typically apparent in their breed. Breeds in which the PRA gene is recessive may still be carriers of the gene and pass it on to their offspring, however, even if they lack symptoms, and it is also possible for onset of the disease to be later than expected, making this an imperfect test at best.
Hemeralopia (from Greek "ημέρα", hemera "day"; and "αλαός", alaos "blindness") is the inability to see clearly in bright light and is the exact opposite of nyctalopia (night blindness). Hemera was the Greek goddess of day and Nyx was the goddess of night. However, it has been used in an opposite sense by many non-English-speaking doctors. It can be described as insufficient adaptation to bright light. It is also called heliophobia and day blindness.
In hemeralopia, daytime vision gets worse, characterised by photoaversion (dislike/avoidance of light) rather than photophobia (eye discomfort/pain in light) which is typical of inflammations of eye. Nighttime vision largely remains unchanged due to the use of rods as opposed to cones (during the day), which are affected by hemeralopia and in turn degrade the daytime optical response. Hence many patients feel they see better at dusk than in daytime.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
Aulus Cornelius Celsus, writing ca. 30 AD, described night blindness and recommended an effective dietary supplement: "There is besides a weakness of the eyes, owing to which people see well enough indeed in the daytime but not at all at night; in women whose menstruation is regular this does not happen. But success sufferers should anoint their eyeballs with the stuff dripping from a liver whilst roasting, preferably of a he-goat, or failing that of a she-goat; and as well they should eat some of the liver itself."
Historically, nyctalopia, also known as moonblink, was a temporary night blindness believed to be caused by sleeping in moonlight in the tropics.
In the French language, and have inverse meanings, the first naming the ability to see in the dark as well as in plain light, and the second the inability to do so. It is thought that this inversion from Latin happened during the 2nd century AD, even though the ancient greek νυκτάλωψ ("nuktálōps") has been used in both senses.
Prophylaxis consists of periodic administration of Vitamin A supplements. WHO recommended schedule, which is universally recommended is as follows:
- Infants 6–12 months old and any older children weighing less than 8 kg - 100,000 IU orally every 3–6 months
- Children over 1 year and under 6 years of age - 200,000 IU orally every 6 months
- Infants less than 6 months old, who are not being breastfed - 50,000 IU orally should be given before they attain the age of 6 months
Oguchi's disease is unique in its electroretinographic responses in the light- and dark-adapted conditions. The A- and b-waves on single flash electroretinograms (ERG) are decreased or absent under lighted conditions but increase after prolonged dark adaptation. There are nearly undetectable rod b waves in the scotopic 0.01 ERG and nearly negative scotopic 3.0 ERGs.
Dark-adaptation studies have shown that highly elevated rod thresholds decrease several hours later and eventually result in a recovery to the normal or nearly normal level.
The S, M and L cone systems are normal.
Treatment can occur in two ways: treating symptoms and treating the deficiency. Treatment of symptoms usually includes the use of artificial tears in the form of eye drops, increasing the humidity of the environment with humidifiers, and wearing wraparound glasses when outdoors. Treatment of the deficiency can be accomplished with a Vitamin A or multivitamin supplement or by eating foods rich in Vitamin A. Treatment with supplements and/or diet can be successful until the disease progresses as far as corneal ulceration, at which point only an extreme surgery can offer a chance of returning sight.
While nothing currently can be done to stop or reverse the retinal degeneration, there are steps that can be taken to slow the rate of vision loss. UV-blocking sunglasses for outdoors, appropriate dietary intake of fresh fruit and leafy green vegetables, antioxidant vitamin supplements, and regular intake of dietary omega-3 very-long-chain fatty acids are all recommended.
One study found that a dietary supplement of lutein increases macular pigment levels in patients with choroideremia. Over a long period of time, these elevated levels of pigmentation could slow retinal degeneration. Additional interventions that may be needed include surgical correction of retinal detachment and cataracts, low vision services, and counseling to help cope with depression, loss of independence, and anxiety over job loss.
Other conditions with similar appearing fundi include
- Cone dystrophy
- X-linked retinitis pigmentosa
- Juvenile macular dystrophy
These conditions do not show the Mizuo-Nakamura phenomenon.