Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Orthostatic hypotension can be confirmed by measuring a person's blood pressure after lying flat for 5 minutes, then 1 minute after standing, and 3 minutes after standing. Orthostatic hypotension is defined as a fall in systolic blood pressure of at least 20 mmHg and/or in the diastolic blood pressure of at least 10 mmHg between the supine reading and the upright reading. In addition, the heart rate should also be measured for both positions. A significant increase in heart rate from supine to standing may indicate a compensatory effort by the heart to maintain cardiac output or postural orthostatic tachycardia syndrome (POTS). A tilt table test may also be performed.
The diagnosis of hypotension is made by first obtaining a blood pressure, either non-invasively with a sphygmomanometer or invasively with an arterial catheter (mostly in an intensive care setting). If the MAP (Mean Arterial Pressure) is <65mmHg, this is generally considered hypotension.
For most adults, the healthiest blood pressure is at or below 120/80 mmHg. A small drop in blood pressure, even as little as 20 mmHg, can result in transient hypotension.
Evaluation of vasovagal syncope is done with a tilt table test.
The treatment for hypotension depends on its cause. Chronic hypotension rarely exists as more than a symptom. Asymptomatic hypotension in healthy people usually does not require treatment. Adding electrolytes to a diet can relieve symptoms of mild hypotension. A morning dose of caffeine can also be effective. In mild cases, where the patient is still responsive, laying the person in dorsal decubitus (lying on the back) position and lifting the legs increases venous return, thus making more blood available to critical organs in the chest and head. The Trendelenburg position, though used historically, is no longer recommended.
Hypotensive shock treatment always follows the first four following steps. Outcomes, in terms of mortality, are directly linked to the speed that hypotension is corrected. Still-debated methods are in parentheses, as are benchmarks for evaluating progress in correcting hypotension. A study on septic shock provided the delineation of these general principles. However, since it focuses on hypotension due to infection, it is not applicable to all forms of severe hypotension.
1. Volume resuscitation (usually with crystalloid)
2. Blood pressure support with a vasopressor (all seem equivalent with respect to risk of death, with norepinephrine possibly better than dopamine). Trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
3. Ensure adequate tissue perfusion (maintain SvO2 >70 with use of blood or dobutamine)
4. Address the underlying problem (i.e., antibiotic for infection, stent or CABG (coronary artery bypass graft surgery) for infarction, steroids for adrenal insufficiency, etc...)
The best way to determine if a person will benefit from fluids is by doing a passive leg raise followed by measuring the output from the heart.
Apart from treating underlying reversible causes (e.g., stopping or reducing certain medications), there are a number of measures that can improve the symptoms of orthostatic hypotension and prevent episodes of syncope. Even small increases in the blood pressure may be sufficient to maintain blood flow to the brain on standing.
In people who do not have a diagnosis of high blood pressure, drinking 2–3 liters of fluid a day and taking 10 grams of salt can improve symptoms, by maximizing the amount of fluid in the bloodstream. Another strategy is keeping the head of the bed slightly elevated. This reduces the return of fluid from the limbs to the kidneys at night, thereby reducing nighttime urine production and maintaining fluid in the circulation. Various measures can be used to improve the return of blood to the heart: the wearing of compression stockings and exercises ("physical counterpressure manoeuvres" or PCMs) that can be undertaken just before standing up (e.g., leg crossing and squatting).
People with POTS will show a marked rise in heart rate within 10 minutes of standing or being tilted 60° head-up on a tilt table, without a corresponding decrease in blood pressure. A variety of autonomic tests are employed to exclude autonomic disorders that could underlie symptoms, while endocrine testing is used to exclude hyperthyroidism and rarer endocrine conditions. Electrocardiography is normally performed on all patients to exclude other possible causes of tachycardia. In cases where a particular associated condition or complicating factor are suspected, other non-autonomic tests may be used: echocardiography to exclude mitral valve prolapse, and thermal threshold tests for small-fiber neuropathy.
Testing the cardiovascular response to prolonged head-up tilting, exercise, eating, and heat stress may help determine the best strategy for managing symptoms. POTS has also been divided into several types (see § Causes), which may benefit from distinct treatments. People with neuropathic POTS show a loss of sweating in the feet during sweat tests, as well as impaired norepinephrine release in the leg, but not arm. This is believed to reflect peripheral sympathetic denervation in the lower limbs. People with hyperadrenergic POTS show a marked increase of blood pressure and norepinephrine levels when standing, and are more likely to suffer from prominent palpitations, anxiety, and tachycardia.
The tilt table test is an evaluative clinical test to help identify postural hypotension, a common cause of presyncope or syncope. A tilt angle of 60 and 70 degrees is optimal and maintains a high degree of specificity. A positive sign with the tilt table test must be taken in context of patient history, with consideration of pertinent clinical findings before coming to a conclusion.
POTS has a favorable prognosis when managed appropriately. Symptoms improve within five years of diagnosis for many patients, and 60% return to their original level of functioning. About 90% of people with POTS respond to a combination of pharmacological and physical treatments. Those who develop POTS in their early to mid teens during a period of rapid growth will most likely see complete symptom resolution in two to five years. Outcomes are more guarded for adults newly diagnosed with POTS. Some people do not recover, and a few even worsen with time. The hyperadrenergic type of POTS typically requires continuous therapy. If POTS is caused by another condition, outcomes depend on the prognosis of the underlying disorder.
The first changes seen in shock is an increased cardiac output followed by a decrease in mixed venous oxygen saturation (SmvO2) as measured in the pulmonary artery via a pulmonary artery catheter. Central venous oxygen saturation (ScvO2) as measured via a central line correlates well with SmvO2 and are easier to acquire. If shock progresses anaerobic metabolism will begin to occur with an increased blood lactic acid as the result. While many laboratory tests are typically performed there is no test that either makes or excludes the diagnosis. A chest X-ray or emergency department ultrasound may be useful to determine volume state.
OI is "notoriously difficult to diagnose." As a result, many patients have gone undiagnosed or misdiagnosed and either untreated or treated for other disorders. Current tests for OI (Tilt table test, autonomic assessment, and vascular integrity) can also specify and simplify treatment. (See Dr. Julian Stewart's article, "Orthostatic Intolerance: An Overview" for a more detailed description of OI tests.)
The best evidence exists for the treatment of septic shock in adults and as the pathophysiology appears similar in children and other types of shock treatment this has been extrapolated to these areas. Management may include securing the airway via intubation if necessary to decrease the work of breathing and for guarding against respiratory arrest. Oxygen supplementation, intravenous fluids, passive leg raising (not Trendelenburg position) should be started and blood transfusions added if blood loss is severe. It is important to keep the person warm as well as adequately manage pain and anxiety as these can increase oxygen consumption.
Septic shock is associated with significant mortality and is the leading non cardiac cause of death in intensive care units (ICUs).
The choice of fluids for resuscitation remains an area of research, the Surviving Sepsis Campaign an international consortium of experts, did not find adequate evidence to support the superiority crystalloid fluids versus colloid fluids. Drugs such as, pyridoxalated hemoglobin polyoxyethylene, which scavenge nitric oxide from the blood have been investigated. As well as methylene blue which may inhibit the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway which has been suggested to play a significant role in distributive shock.
Most patients experience an improvement of their symptoms, but for some, OI can be gravely disabling and can be progressive in nature, particularly if it is caused by an underlying condition which is deteriorating. The ways in which symptoms present themselves vary greatly from patient to patient; as a result, individualized treatment plans are necessary.
OI is treated both pharmacologically and non-pharmacologically. Treatment does not cure OI; rather, it controls symptoms.
Physicians who specialize in treating OI agree that the single most important treatment is drinking more than two liters (eight cups) of fluids each day. A steady, large supply of water or other fluids reduces most, and for some patients all, of the major symptoms of this condition. Typically, patients fare best when they drink a glass of water no less frequently than every two hours during the day, instead of drinking a large quantity of water at a single point in the day.
For most severe cases and some milder cases, a combination of medications are used. Individual responses to different medications vary widely, and a drug which dramatically improves one patient's symptoms may make another patient's symptoms much worse. Medications focus on three main issues:
Medications that increase blood volume:
- Fludrocortisone (Florinef)
- Erythropoietin
- Hormonal contraception
Medications that inhibit acetylcholinesterase:
- Pyridostigmine
Medications that improve vasoconstriction:
- Stimulants: (e.g., Ritalin or Dexedrine)
- Midodrine (ProAmatine)
- Ephedrine and pseudoephedrine (Sudafed)
- Theophylline (low-dose)
- Selective serotonin reuptake inhibitors (SSRI's - Prozac, Zoloft, and Paxil)
Behavioral changes that patients with OI can make are:
- Avoiding triggers such as prolonged sitting, quiet standing, warm environments, or vasodilating medications
- Using postural maneuvers and pressure garments
- Treating co-existing medical conditions
- Increasing fluid and salt intake
- Physical therapy and exercise unless contraindicated by an underlying condition such as chronic fatigue syndrome where traditional exercise can worsen the condition
Presyncope is a state of lightheadedness, muscular weakness, blurred vision, and feeling faint (as opposed to a syncope, which is actually fainting). Presyncope is most often cardiovascular in cause. In many people, lightheadedness is a symptom of orthostatic hypotension. Orthostatic hypotension occurs when blood pressure drops significantly when the patient stands from a supine (horizontal) or seatted position. If loss of consciousness occurs in this situation, it is termed syncope.
Presyncope is frequently reported in people with autonomic dysfunctions such as the postural orthostatic tachycardia syndrome (POTS).
Not required for physiologic sinus tachycardia. Underlying causes are treated if present.
Acute myocardial infarction. Sinus tachycardia can present in more than a third of the patients with AMI but this usually decreases over time. Patients with sustained sinus tachycardia reflects a larger infarct that are more anterior with prominent left ventricular dysfunction, associated with high mortality and morbidity. Tachycardia in the presence of AMI can reduce coronary blood flow and increase myocardial oxygen demand, aggravating the situation. Beta blockers can be used to slow the rate, but most patients are usually already treated with beta blockers as a routine regimen for AMI.
Practically, many studies showed that there is no need for any treatment.
IST and POTS. Beta blockers are useful if the cause is sympathetic overactivity. If the cause is due to decreased vagal activity, it is usually hard to treat and one may consider radiofrequency catheter ablation.
Usually in women with no heart problems, this syndrome is characterized by normal resting heart rate but exaggerated postural sinus tachycardia with or without orthostatic hypotension.
No formal diagnostic criteria exist. A diagnosis of Inappropriate sinus tachycardia is primarily one of exclusion and the following may be observed:
- Exclusion of all other causes of sinus tachycardia
- Common forms of supraventricular tachycardia (SVT) must be excluded
- Normal P wave morphology
- A resting sinus tachycardia is usually (but not always) present
- Nocturnal dip in heart rate
- Inappropriate heart rate response on exertion
- Mean heart rate in 24hrs >95 bpm
- Symptoms are documented to be due to tachycardia
- Hypotension is occasionally observed
- Syncope (fainting) is occasionally reported
In those that are unstable with a narrow complex tachycardia, intravenous adenosine may be attempted. In all others immediate cardioversion is recommended.
Neurogenic shock can result from severe central nervous system damage (brain injury, cervical or high thoracic spinal cord). In more simple terms: the trauma causes a sudden loss of background sympathetic stimulation to the blood vessels. This causes them to relax (vasodilation) resulting in a sudden decrease in blood pressure (secondary to a decrease in peripheral vascular resistance).
Neurogenic shock results from damage to the spinal cord above the level of the 6th thoracic vertebra. It is found in about half of people who suffer spinal cord injury within the first 24 hours, and usually doesn't go away for one to three weeks.
The upper threshold of a normal human resting heart rate is based on age. Cutoff values for tachycardia in different age groups are fairly well standardized; typical cutoffs are listed below:
- 1–2 days: Tachycardia > 159 beats per minute (bpm)
- 3–6 days: Tachycardia >166 bpm
- 1–3 weeks: Tachycardia >182 bpm
- 1–2 months: Tachycardia >179 bpm
- 3–5 months: Tachycardia >186 bpm
- 6–11 months: Tachycardia >169 bpm
- 1–2 years: Tachycardia >151 bpm
- 3–4 years: Tachycardia >137 bpm
- 5–7 years: Tachycardia >133 bpm
- 8–11 years: Tachycardia >130 bpm
- 12–15 years: Tachycardia >119 bpm
- >15 years – adult: Tachycardia >100 bpm
Heart rate is considered in the context of the prevailing clinical picture. For example: in sepsis >90 bpm is considered tachycardia.
When the heart beats excessively or rapidly, the heart pumps less efficiently and provides less blood flow to the rest of the body, including the heart itself. The increased heart rate also leads to increased work and oxygen demand by the heart, which can lead to rate related ischemia.
Relative tachycardia involves a greater increase in rate than would be expected in a given illness state.
While CSWS usually appears within the first week after brain injury and spontaneously resolves in 2–4 weeks, it can sometimes last for months or years. In contrast to the use of fluid restriction to treat SIADH, CSWS is treated by replacing the urinary losses of water and sodium with hydration and sodium replacement. The mineralocorticoid medication fludrocortisone can also improve the low sodium level.
The diagnosis of dysautonomia depends on the overall function of three autonomic functions – cardiovagal, adrenergic, and sudomotor. A diagnosis should, at a bare minimum, include measurements of blood pressure and heart rate while lying flat, and after at least 3 minutes of standing. The best way to achieve a diagnosis includes a range of testing, notably an autonomic reflex screen, tilt table test, and testing of the sudomotor response (QSART or thermoregulatory sweat test).
Additional tests and examinations to determine a diagnosis of dysautonomia include
Neurogenic shock is a distributive type of shock resulting in low blood pressure, occasionally with a slowed heart rate, that is attributed to the disruption of the autonomic pathways within the spinal cord. It can occur after damage to the central nervous system such as spinal cord injury. Low blood pressure occurs due to decreased systemic vascular resistance resulting in pooling of blood within the extremities lacking sympathetic tone. The slowed heart rate results from unopposed vagal activity and has been found to be exacerbated by hypoxia and endobronchial suction.
Neurogenic shock can be a potentially devastating complication, leading to organ dysfunction and death if not promptly recognized and treated. It is not to be confused with spinal shock, which is not circulatory in nature.
Untreated individuals with DβH deficiency should avoid hot environments, strenuous exercise, standing still, and dehydration.
Particularly in the Russian literature, a subtype of dysautonomia which particularly affects the vascular system has been called vegetative-vascular dystonia. The term "vegetative" reflects an older name for the autonomic nervous system: the vegetative nervous system.