Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prevention for Alström Syndrome is considered to be harder compared to other diseases/syndromes because it is an inherited condition. However, there are other options that are available for parents with a family history of Alström Syndrome. Genetic testing and counseling are available where individuals are able to meet with a genetic counselor to discuss risks of having the children with the disease. The genetic counselor may also help determine whether individuals carry the defective ALSM1 gene before the individuals conceive a child. Some of the tests the genetic counselors perform include chorionic villus sampling (CVS), Preimplantation genetic diagnosis (PGD), and amniocentesis. With PGD, the embryos are tested for the ALSM1 gene and only the embryos that are not affected may be chosen for implantation via in vitro fertilization.
When accompanied by the combination of situs inversus (reversal of the internal organs), chronic sinusitis, and bronchiectasis, it is known as Kartagener syndrome (only 50% of primary ciliary dyskinesia cases include situs inversus).
It is possible to clinically detect Alström syndrome in infancy, but more frequently, it is detected much later, as doctors tend to detect symptoms as separate problems. Currently, Alström syndrome is often diagnosed clinically, since genetic testing is costly and only available on a limited basis.
A physical examination would be needed to properly diagnose the patient. Certain physical characteristics can determine if the patient has some type of genetic disorder. Usually, a geneticist would perform the physical examination by measuring the distance around the head, distance between the eyes, and the length of arms and legs. In addition, examinations for the nervous system or the eyes may be performed. Various imaging studies like computerized tomography scans (CT), Magnetic Resonance Imaging (MRI), or X-rays are used to see the structures within the body.
Family and personal medical history are required. Information about the health of an individual is crucial because it provides traces to a genetic diagnosis.
Laboratory tests, particularly genetic testing, are performed to diagnose genetic disorders. Some of the types of genetic testing are molecular, biochemical, and chromosomal. Other laboratory tests performed may measure levels of certain substances in urine and blood that can also help suggest a diagnosis.
Several diagnostic tests for this condition have been proposed. These include nasal nitric oxide levels, light microscopy of biopsies for ciliary beat pattern and frequency and electron microscopic examination of dynein arms. Genetic testing has also been proposed but this is difficult given that there are multiple genes involved.
The diagnosis of nephronophthisis can be obtained via a renal ultrasound, family history and clinical history of the affected individual according to Stockman, et al.
In a sample of 19 children, a 1997 study found that 3 died before the age of 3, and 2 never learned to walk. The children had various levels of delayed development with developmental quotients from 60 to 85.
Orofaciodigital syndrome type 1 is diagnosed through genetic testing. Some symptoms of Orofaciodigital syndrome type 1 are oral features such as, split tongue, benign tumors on the tongue, cleft palate, hypodontia and other dental abnormalities. Other symptoms of the face include hypertelorism and micrognathia. Bodily abnormalities such as webbed, short, joined, or abnormally curved fingers and toes are also symptoms of Orofaciodigital syndrome type 1. The most frequent symptoms are accessory oral frenulum, broad alveolar ridges, frontal bossing, high palate, hypertelorism, lobulated tongue, median cleft lip, and wide nasal bridge. Genetic screening of the OFD1 gene is used to officially diagnose a patient who has the syndrome, this is detected in 85% of individuals who are suspected to have Orofaciodigital syndrome type 1.
The disorder is characterized by absence or underdevelopment of the cerebellar vermis and a malformed brain stem (molar tooth sign), both of which can be visualized on a MRI scan. Together with this sign, the diagnosis is based on the physical symptoms and genetic testing for mutations. If the gene mutations have been identified in a family member, prenatal or carrier diagnosis can be pursued.
Joubert Syndrome is known to affect 1 in 80,000-100,000 newborns. Due to the variety of genes this disorder is affected by, it is likely to be under-diagnosed. It is commonly found in Ashkenazi Jewish, French-Canadians, and Hutterite ethnic populations. Most cases of Joubert syndrome are autosomal recessive - in these cases, both parents are either carriers or affected. Rarely, Joubert syndrome is inherited in an X-linked recessive pattern. In these cases, males are more commonly affected because affected males must have one X chromosome mutated, while affected females must have mutated genes on both X chromosomes.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
Orofaciodigital syndrome type 1 can be treated with reconstructive surgery or the affected parts of the body. Surgery of cleft palate, tongue nodules, additional teeth, accessory frenulae, and orthodontia for malocclusion. Routine treatment for patients with renal disease and seizures may also be necessary. Speech therapy and special education in the later development may also be used as management.
Dysplastic kidneys are prevalent in over 95% of all identified cases. When this occurs, microscopic cysts develop within the kidney and slowly destroy it, causing it to enlarge to 10 to 20 times its original size. The level of amniotic fluid within the womb may be significantly altered or remain normal, and a normal level of fluid should not be criteria for exclusion of diagnosis.
Occipital encephalocele is present in 60% to 80% of all cases, and post-axial polydactyly is present in 55% to 75% of the total number of identified cases. Bowing or shortening of the limbs are also common.
Finding at least two of the three phenotypic features of the classical triad, in the presence of normal karyotype, makes the diagnosis solid. Regular ultrasounds and pro-active prenatal care can usually detect symptoms early on in a pregnancy.
The management of this condition can be done via-improvement of any electrolyte imbalance, as well as, hypertension and anemia treatment as the individuals condition warrants.
Pre-implantation genetic diagnosis (PGD or PIGD) is a technique used to identify genetically normal embryos and is useful for couples who have a family history of genetic disorders. This is an option for people choosing to procreate through IVF. PGD is considered difficult due to it being both time consuming and having success rates only comparable to routine IVF.
While not precisely known, it is estimated that the general rate of incidence, according to Bergsma, for Meckel syndrome is 0.02 per 10,000 births. According to another study done six years later, the incidence rate could vary from 0.07 to 0.7 per 10,000 births.
This syndrome is a Finnish heritage disease. Its frequency is much higher in Finland, where the incidence is as high as 1.1 per 10,000 births. It is estimated that Meckel syndrome accounts for 5% of all neural tube defects there.
Diagnosis is usually based on clinical findings, although fetal chromosome testing will show trisomy 13. While many of the physical findings are similar to Edwards syndrome there are a few unique traits, such as polydactyly. However, unlike Edwards syndrome and Down syndrome, the quad screen does not provide a reliable means of screening for this disorder. This is due to the variability of the results seen in fetuses with Patau.
Blastomere biopsy is a technique in which blastomeres are removed from the zona pellucida. It is commonly used to detect aneuploidy. Genetic analysis is conducted once the procedure is complete. Additional studies are needed to assess the risk associated with the procedure.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
"The phenotypic parameters that define a ciliopathy may be used to both recognize the cellular basis of a number of genetic disorders and to facilitate the diagnosis and treatment of some diseases of unknown" cause.
It is an autosomal recessive disease.
Sonography shows bilateral small kidneys with loss of corticomedullary junction and multiple cysts only in the medulla. Cysts may only be seen if they are large enough, they are rarely visible early in disease.
Patients with medullary cystic disease present with similar features as juvenile nephronophthisis but they can be differentiated by:
1. Absence of growth retardation.
2. Age of presentation is third or fourth decade.
3. Hypertension may occur (in JN, hypertension is not seen).
In polycystic kidney disease, there is bilateral enlargement of kidneys (small kidneys in JN).
Genetic testing methods such as fluorescence in situ hybridization (FISH) and chromosomal microarray are available for diagnosing Dup15q syndrome and similar genetic disorders.
With the increase in genetic testing availability, more often duplications outside of the 15q11.2-13.1 region are being diagnosed. The global chromosome 15q11.2-13.1 duplication syndrome specific groups only provide medical information and research for chromosome 15q11.2-13.1 duplication syndrome and not the outlying 15q duplications.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically observed disorders. BBS is one such syndrome that has now been identified to be caused by defects in the cellular ciliary structure. Thus, BBS is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel–Gruber syndrome and some forms of retinal degeneration.
The syndrome is named after Georges Bardet and Arthur Biedl.The first known case was reported by Laurence and Moon in 1866 at the Ophthalmic Hospital in South London. Laurence–Moon–Biedl–Bardet syndrome is no longer considered as valid terms in that patients of Laurence and Moon had paraplegia but no polydactyly or obesity, which are the key elements of the Bardet–Biedl syndrome. Laurence–Moon syndrome is usually considered a separate entity. However, some recent research suggests that the two conditions may not be distinct.
, 14
(or 15) different BBS genes had been identified.
It is the most common genetic cause of end stage renal disease (renal failure) in childhood and adolescence.
Senior–Løken syndrome is a congenital eye disorder, first characterized in 1961. It is a rare, ciliopathic, autosomal recessive disorder characterized by nephronophthisis and progressive eye disease.