Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of Perlman syndrome is based on observed phenotypic features and confirmed by histological examination of the kidneys. Prenatal diagnosis is possible for families that have a genetic disposition for Perlman syndrome although there is no conclusive laboratory test to confirm the diagnosis. Fetal overgrowth, particularly with an occipitofrontal circumference (OFC) greater than the 90th centile for gestational age, as well as an excess of amniotic fluid in the amniotic sac (polyhydramnios), may be the first signs of Perlman. Using ultrasound diagnosis, Perlman syndrome has been detected at 18 weeks. During the first trimester, the common abnormalities of the syndrome observed by ultrasound include cystic hygroma and a thickened nuchal lucency. Common findings for the second and third trimesters include macrosomia, enlarged kidneys, renal tumors (both hamartoma and Wilms), cardiac abnormalities and visceromegaly.
Prompt recognition and identification of the disorder along with accurate follow-up and clinical assistance is recommended as the prognosis for Perlman is severe and associated with a high neonatal death rate.
The diagnosis is usually based on clinical features present at birth.
Ultrasound in the second trimester may show abnormalities associates with NLS, including polyhydramnios, intrauterine growth restriction, microcephaly, proptosis and decreased fetal motility.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
There is no treatment for FTHS, though identification of TKS4 mutation as a causative factor may eventually provide new opportunities for neonatal screening in high-risk families.
Perlman syndrome shares clinical overlaps with other overgrowth disorders, with similarities to Beckwith–Wiedemann syndrome and Simpson-Golabi-Behmel syndrome having been particularly emphasized in scientific study. Similarities with Beckwith-Wiedemann syndrome include polyhydramnios, macrosomia, nephromegaly and hypoglycaemia. It is the distinctive facial dysmorphology of Perlman, including deep-set eyes, depressed nasal bridge, everted upper lip, and macrocephaly which allows the two conditions to be distinguished from one another. Diagnosis of Perlman syndrome also overlaps with other disorders associated with Wilms tumor, namely, Sotos syndrome and Weaver syndrome.
Diagnosis can be made at birth by identifying the symptoms of the child. Ultrastructural diagnosis where tissues are analyzed is using electron microscopy is also conducted. A specimen of skin is obtained via a skin biopsy and analyzed to see any tell tale characteristics.Genetic testing can also be done to identify the mutation on the FATP4 gene associated with fatty acid synthesis. Genetic consultation through a genetic counsellor is done to determine whether the individual has this syndrome and reduces the chances of misdiagnoses with other cutaneous diseases.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
Wiedemann–Rautenstrauch (WR) syndrome , also known as neonatal progeroid syndrome, is an autosomal recessive progeroid syndrome.
WR was first reported by Rautenstrauch and Snigula in 1977; and the earliest reports made subsequently have been by Wiedemann in 1979, by Devos in 1981, and Rudin in 1988. There have been over 30 cases of WR.
WR is associated with abnormalities in bone maturation, and lipids and hormone metabolism. Affected individuals exhibit intrauterine and postnatal growth retardation, leading to short stature and an aged appearance from birth. They have physical abnormalities including a large head (macrocephaly), sparse hair, prominent scalp veins, inward-folded eyelid (entropion), widened anterior fontanelles, hollow cheeks (malar hypoplasia), general loss of fat tissues under the skin (lipoatrophy), delayed tooth eruption, abnormal hair pattern (hypotrichosis), beaked nose, mild to severe mental retardation and dysmorphism.
Marfan lipodystrophy syndrome (MFLS) has sometimes been confused with Wiedemann–Rautenstrauch syndrome, since the Marfanoid features are progressive and sometimes incomplete. MFLS is caused by mutations near the 3'-terminus of "FBN1" that cause a deficiency of the protein hormone asprosin and progeroid-like symptoms with reduced subcutaneous white adipose tissue.
There are no life-threatening complications after the perinatal period (around the time of birth) and the skin conditions persist but to a lesser degree of severity. Individuals have a favourable prognosis as symptoms can be managed and past the infancy stage are not life-threatening. The red skin edema improves after a three-week period but the ichthyosis scaling persists. Asthma has been recorded in some cases later on in the individual's life and sign of atopic dermatitis persist, follicular hyperkeratosis and small amounts of scaling at the scalp that goes on into adulthood but otherwise the individual continues a healthy life.
Many other disorders can produce the same type of body characteristics as Marfan syndrome. Genetic testing and evaluating other signs and symptoms can help to differentiate these. The following are some of the disorders that can manifest as "marfanoid":
- Congenital contractural arachnodactyly or Beals syndrome
- Ehlers–Danlos syndrome
- Homocystinuria
- Loeys–Dietz syndrome
- MASS phenotype
- Multiple endocrine neoplasia, type 2B
- Shprintzen–Goldberg syndrome
- Stickler syndrome
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
X-ray applications on most cases have brought about little outcome in most of the published case reports. As a consequence, a certain number of authors consider acrogeria mainly as a cutaneous affection, but the bone alterations are well described as part of the syndrome.
For patients who show typical alterations of acrogeria and metageria, in a concomitant way, the single term of "Acrometageria" has been proposed, which can refer to the widest spectrum of premature ageing syndromes.
However, this concept is still not generally accepted in the medical literature.As these are extremely rare syndromes, all sharing an aspect of aging skin similar to progeria, they are also called progeroid syndromes, from time to time.
In general, the prognosis is very good. Children with BWS usually do very well and grow up to become the heights expected based on their parents' heights. While children with BWS are at increased risk of childhood cancer, most children with BWS do not develop cancer and the vast majority of children who do develop cancer can be treated successfully.
Children with BWS for the most part had no significant delays when compared to their siblings. However, some children with BWS do have speech problems that could be related to macroglossia or hearing loss.
Advances in treating neonatal complications and premature infants in the last twenty years have significantly improved the true infant mortality rate associated with BWS. In a review of pregnancies that resulted in 304 children with BWS, no neonatal deaths were reported. This is compared to a previously reported mortality rate of 20%. The data from the former study was derived from a BWS registry, a database that may be slightly biased towards involving living children; however, death was not an exclusion criterion to join the registry. This suggests that while infants with BWS are likely to have a higher than normal infant mortality risk, it may not be as high as 20%.
Many people with MDP syndrome are high achievers intellectually following careers in law, medicine and computing. A crucial point is that they do not have progeria and there is no evidence of accelerated intellectual decline with age in these patients. Equally life expectancy has not been shown to be reduced. Patients of 65 have been described in the literature and none of the patients are known to have malignancy. Therefore, there are many crucial differences with progeria and the name of progeroid in the title is confusing as this really refers to the lack of fat in the face and taut skin and not any intellectual or other age associated features.
Assisted reproductive technology (ART) is a general term referring to methods used to achieve pregnancy by artificial or partially artificial means. According to the CDC, in general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. ART has been associated with epigenetic syndromes, specifically BWS and Angelman syndrome. Three groups have shown an increased rate of ART conception in children with BWS. A retrospective case control study from Australia found a 1 in 4000 risk of BWS in their in-vitro population, several times higher than the general population. Another study found that children conceived by in vitro fertilisation (IVF) are three to four times more likely to develop the condition. No specific type of ART has been more closely associated with BWS. The mechanism by which ART produces this effect is still under investigation.
One Finnish study which followed 25 cases from 18 families found that half the infants died within 3 days of birth and the other half died before 4 months of age.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
In most cases Ballantyne syndrome causes fetal or neonatal death and in contrast, maternal involvement is limited at the most to preeclampsia.
There is currently no specific treatment available for either of these so-called progeroid syndromes. With this in mind, what is most important when making a differential diagnosis with them is based on the prognosis, which appears to be far better in acrogeria.
Although the exact etiopathogenetic mechanism of Ballantyne syndrome remains unknown, several authors have reported raised uric acid levels, anemia, and low hematocrit without hemolysis.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
GRACILE syndrome is a very rare autosomal recessive genetic disorder, one of the Finnish heritage diseases. It is caused by mutation in BCS1L gene that occurs in at least 1 out of 47,000 live births in Finnish people.
GRACILE is an acronym for growth retardation, amino aciduria (amino acids in the urine), cholestasis, iron overload, lactic acidosis, and early death. Other names for this syndrome include Finnish lethal neonatal metabolic syndrome (FLNMS); lactic acidosis, Finnish, with hepatic hemosiderosis; and Fellman syndrome.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Deafness is a feature of MDP syndrome as a result of the nerves not working well and people often have difficulty getting hearing aids because of the small size of their ears. Digital hearing aids can be helpful and audiometry follow up will be needed.
Neonatal ichthyosis–sclerosing cholangitis syndrome (also known as "NISCH syndrome" and "ichthyosis–sclerosing cholangitis syndrome") is a cutaneous condition caused by mutations in the Claudin 1 gene.