Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A few techniques are used to confirm the diagnosis in TCS.
An orthopantomogram (OPG) is a panoramic dental X-ray of the upper and lower jaw. It shows a two-dimensional image from ear to ear. Particularly, OPG facilitates an accurate postoperative follow-up and monitoring of bone growth under a mono- or double-distractor treatment. Thereby, some TCS features could be seen on OPG, but better techniques are used to include the whole spectrum of TCS abnormalities instead of showing only the jaw abnormalities.
Another method of radiographic evaluation is taking an X-ray image of the whole head. The lateral cephalometric radiograph in TCS shows hypoplasia of the facial bones, like the malar bone, mandible, and the mastoid.
Finally, occipitomental radiographs are used to detect hypoplasia or discontinuity of the zygomatic arch.
A temporal-bone CT using thin slices makes it possible to diagnose the degree of stenosis and atresia of the external auditory canal, the status of the middle ear cavity, the absent or dysplastic and rudimentary ossicles, or inner ear abnormalities such as a deficient cochlea. Two- and three-dimensional CT reconstructions with VRT and bone and skin-surfacing are helpful for more accurate staging and the three-dimensional planning of mandibular and external ear reconstructive surgery.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
Genetic testing for CHARGE syndrome involves specific genetic testing for the CHD7 gene. The test is available at most major genetic testing laboratories. Insurance companies sometimes do not pay for such genetic tests, though this is changing rapidly as genetic testing is becoming standard across all aspects of medicine. CHARGE syndrome is a clinical diagnosis, which means genetic testing is not required in order to make the diagnosis. Rather, the diagnosis can be made based on clinical features alone.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
Microlissencephaly can be diagnosed by prenatal MRI. MRI is better than ultrasound when it comes to detecting microlissencephaly or MSGP prenatally.
The ideal time for proper prenatal diagnosis is between the 34th and 35th gestational week which is the time when the secondary gyration normally terminates. In microlissencephaly cases, the primary sulci would be unusually wide and flat while secondary sulci would be missing.
At birth, lissencephaly with a head circumference of less than minus three standard deviations (< –3 SD) is considered microlissencephaly.
Although genetic diagnosis in patients with MLIS is challenging, exome sequencing has been suggested to be a powerful diagnostic tool.
Once the diagnosis is made based on clinical signs, it is important to investigate other body systems that may be involved. For example, if the diagnosis is made based on the abnormal appearance of the ears and developmental delay, it is important to check the child's hearing, vision, heart, nose, and urogenital system. Ideally, every child newly diagnosed with CHARGE syndrome should have a complete evaluation by an ENT specialist, audiologist, ophthalmologist, pediatric cardiologist, developmental therapist, and pediatric urologist.
Diagnosis of otodental syndrome was established using clinical, histopathological and audiometric methodologies. In normal individuals, by the age of 2-3, radiograph images should depict any signs of premolar development. A formal diagnosis of no premolar growth can be done by age 6 in order to check for signs of otodental syndrome. Sensorineural hearing loss can be another measure for proper diagnosis as well as checking for ocular coloboma. The latter is usually noticed at an around birth.
Molecular genetic testing can aid in the diagnosis of the affected individual, which would determine if there are any abnormalities in the FGF3 gene (11q13) or the FADD gene (11q13.3). Additional tests that can help diagnose otodental syndrome are ear infection tests, hearing tests, oral examination, and eye examinations to check for the specific phenotypic associations. Due to the rarity of otodental syndrome, most symptoms are looked at on an individual basis unless multiple symptoms are all apparent at once.
There is potential for differential diagnosis due to similarities in symptoms. Other diseases that share common symptoms are chondroectodermal dysplasia, achondrodysplasia, and osteopetrosis
Controversies exist around eliminating this disorder from breeding Collies. Some veterinarians advocate only breeding dogs with no evidence of disease, but this would eliminate a large portion of potential breeding stock. Because of this, others recommend only breeding mildly affected dogs, but this would never completely eradicate the condition. Also, mild cases of choroidal hypoplasia may become pigmented and therefore undiagnosable by the age of three to seven months. If puppies are not checked for CEA before this happens, they may be mistaken for normal and bred as such. Checking for CEA by seven weeks of age can eliminate this possibility. Diagnosis is also difficult in dogs with coats of dilute color because lack of pigment in the choroid of these animals can be confused with choroidal hypoplasia. Also, because of the lack of choroidal pigment, mild choroidal hypoplasia is difficult to see, and therefore cases of CEA may be missed.
Until recently, the only way to know if a dog was a carrier was for it to produce an affected puppy. However, a genetic test for CEA became available at the beginning of 2005, developed by the Baker Institute for Animal Health, Cornell University, and administered through OptiGen. The test can determine whether a dog is affected, a carrier, or clear, and is therefore a useful tool in determining a particular dog's suitability for breeding.
Microlissencephaly is considered a more severe form than microcephaly with simplified gyral pattern. Microlissencephaly is characterized by a smooth cortical surface (absent sulci and gyri) with a thickened cortex (> 3 mm) and is usually associated with other congenital anomalies. Microcephaly with a simplified gyral pattern has too few sulci and normal cortical thickness (3 mm) and is usually an isolated anomaly.
Very few risk factors for choanal atresia have been identified. While causes are unknown, both genetic and environmental triggers are suspected. One study suggests that chemicals that act as endocrine disrupters may put an unborn infant at risk. A 2012 epidemiological study looked at atrazine, a commonly used herbicide in the U.S., and found that women who lived in counties in Texas with the highest levels of this chemical being used to treat agricultural crops were 80 times more likely to give birth to infants with choanal atresia or stenosis compared to women who lived in the counties with the lowest levels. Another epidemiological report in 2010 found even higher associations between increased incidents of choanal atresia and exposure to second-hand-smoke, coffee consumption, high maternal zinc and B-12 intake and exposure to anti-infective urinary tract medications.
The treatment of soft tissue parts of midface anomalies is often a reconstruction from a skin flap of the cheek. This skinflap can be used for other operations in the further, as it can be raised again and transposed again. In the treatment of midface anomalies there are generally more operations needed. Bone tissue reconstruction of the midface often occurs later than the soft tissue reconstruction. The most common method to reconstruct the midface is by using the fracture/ incision lines described by René Le Fort. When the cleft involves the maxilla, it is likely that the impaired growth will result in a smaller maxillary bone in all 3 dimensions (height, projection, width).
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.
Treatment is usually supportive treatment, that is, treatment to reduce any symptoms rather than to cure the condition.
- Enucleation of the odontogenic cysts can help, but new lesions, infections and jaw deformity are usually a result.
- The severity of the basal-cell carcinoma determines the prognosis for most patients. BCCs rarely cause gross disfigurement, disability or death .
- Genetic counseling
The original report was of a family in Cardiff, United Kingdom. There are subsequent reports of patients from the USA, France, Australia, UAE, India and from Cuba.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
Sequence analysis shows that "Pax2" is the only known gene associated with the disease. Mutations in Pax2 have been identified in half of renal coloboma syndrome victims.
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
Lenz microphthalmia syndrome (or LMS) is a very rare inherited disorder characterized by abnormal smallness of one or both eyes (microphthalmos) sometimes with droopy eyelids (blepharoptosis), resulting in visual impairment or blindness. Eye problems may include coloboma, microcornea, and glaucoma. Some affected infants may have complete absence of the eyes (anophthalmia). Most affected infants have developmental delay and intellectual disability, ranging from mild to severe. Other physical abnormalities associated with this disorder can include an unusually small head (microcephaly), and malformations of the teeth, ears, fingers or toes, skeleton, and genitourinary system. The range and severity of findings vary from case to case. Formal diagnosis criteria do not exist.
Lenz microphthalmia syndrome is inherited as an X-linked recessive genetic trait and is fully expressed in males only. Females who carry one copy of the disease gene (heterozygotes) may exhibit some of the symptoms associated with the disorder, such as an abnormally small head (microcephaly), short stature, or malformations of the fingers or toes. Molecular genetic testing of BCOR (MCOPS2 locus), the only gene known to be associated with Lenz microphthalmia syndrome, is available on a clinical basis. One additional locus on the X chromosome (MCOPS1) is known to be associated with LMS.
Lenz microphthalmia syndrome is also known as LMS, Lenz syndrome, Lenz dysplasia, Lenz dysmorphogenetic syndrome, or microphthalmia with multiple associated anomalies (MAA: OMIM 309800). It is named after Widukind Lenz, a German geneticist and dysmorphologist.
A somewhat similar X-linked syndrome of microphthalmia, called oculofaciocardiodental syndrome (OFCD) is associated with mutations in BCOR. OFCD syndrome is inherited in an X-linked dominant pattern with male lethality.
The differential diagnosis includes Treacher Collins syndrome, Nager acrofacial dysostosis (preaxial cranial dysostosis). Other types of axial cranial dysostosis included the Kelly, Reynolds, Arens (Tel Aviv), Rodríguez (Madrid), Richieri-Costa and Patterson-Stevenson-Fontaine forms.
It is likely that this syndrome is inherited in an autosomal dominant fashion, however there may be a recessive form with hypotonia and developmental delay.
NBCCS has an incidence of 1 in 50,000 to 150,000 with higher incidence in Australia. One aspect of NBCCS is that basal-cell carcinomas will occur on areas of the body which are not generally exposed to sunlight, such as the palms and soles of the feet and lesions may develop at the base of palmar and plantar pits.
One of the prime features of NBCCS is development of multiple BCCs at an early age, often in the teen years. Each person who has this syndrome is affected to a different degree, some having many more characteristics of the condition than others.
Papillorenal syndrome, also called renal-coloboma syndrome or isolated renal hypoplasia, is an autosomal dominant genetic disorder marked by underdevelopment (hypoplasia) of the kidney and colobomas of the optic nerve.