Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The abscesses within the muscle must be drained surgically (not all patient require surgery if there is no abscess). Antibiotics are given for a minimum of three weeks to clear the infection.
Pyomyositis is most often caused by the bacterium "Staphylococcus aureus". The infection can affect any skeletal muscle, but most often infects the large muscle groups such as the quadriceps or gluteal muscles.
Pyomyositis is mainly a disease of children and was first described by Scriba in 1885. Most patients are aged 2 to 5 years, but infection may occur in any age group. Infection often follows minor trauma and is more common in the tropics, where it accounts for 4% of all hospital admissions. In temperate countries such as the US, pyomyositis was a rare condition (accounting for 1 in 3000 pediatric admissions), but has become more common since the appearance of the USA300 strain of MRSA.
Purpura hemorrhagica may be prevented by proper management during an outbreak of strangles. This includes isolation of infected horses, disinfection of fomites, and good hygiene by caretakers. Affected horses should be isolated at least one month following infection. Exposed horses should have their temperature taken daily and should be quarantined if it becomes elevated. Prophylactic antimicrobial treatment is not recommended.
Vaccination can reduce the incidence and severity of the disease. However, horses with high SeM antibody titers are more likely to develop purpura hemorrhagica following vaccination and so these horses should not be vaccinated. Titers may be measured by ELISA.
Prognosis is good with early, aggressive treatment (92% survival in one study).
Polymyositis and dermatomyositis are first treated with high doses of a corticosteroids
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
Diagnosis is fourfold: History and physical examination, elevation of creatine kinase, electromyograph (EMG) alteration, and a positive muscle biopsy.
The hallmark clinical feature of polymyositis is proximal muscle weakness, with less important findings being muscle pain and dysphagia. Cardiac and pulmonary findings will be present in approximately 25% of cases of patients with polymyositis.
Sporadic inclusion body myositis (sIBM): IBM is often confused with (misdiagnosed as) polymyositis or dermatomyositis that does not respond to treatment is likely IBM. sIBM comes on over months to years; polymyositis comes on over weeks to months. Polymyositis tends to respond well to treatment, at least initially; IBM does not.
The best imaging modality for idiopathic orbital inflammatory disease is contrast-enhanced thin section magnetic resonance with fat suppression. The best diagnostic clue is a poorly marginated, mass-like enhancing soft tissue involving any area of the orbit.
Overall, radiographic features for idiopathic orbital inflammatory syndrome vary widely. They include inflammation of the extraocular muscles (myositis) with tendinous involvement, orbital fat stranding, lacrimal gland inflammation and enlargement (dacryoadenitis), involvement of the optic sheath complex, uvea, and sclera, a focal intraorbital mass or even diffuse orbital involvement. Bone destruction and intracranial extension is rare, but has been reported. Depending on the area of involvement, IOI may be categorized as:
- Myositic
- Lacrimal
- Anterior – Involvement of the globe, retrobulbar orbit
- Diffuse – Multifocal intraconal involvement with or without an extraconal component
- Apical – Involving the orbital apex and with intracranial involvement
Tolosa–Hunt syndrome is a variant of orbital pseudotumor in which there is extension into the cavernous sinus through the superior orbital fissure. Another disease variant is Sclerosing pseudotumor, which more often presents bilaterally and may extend into the sinuses.
CT findings
In non-enhanced CT one may observe a lacrimal, extra-ocular muscle, or other orbital mass. It may be focal or infiltrative and will have poorly circumscribed soft tissue. In contrast-enhanced CT there is moderate diffuse irregularity and enhancement of the involved structures. A dynamic CT will show an attenuation increase in the late phase, contrary to lymphoma where there is an attenuation decrease. Bone CT will rarely show bone remodeling or erosion, as mentioned above.
MR findings
On MR examination there is hypointensity in T1 weighted imaging (WI), particularly in sclerosing disease. T1WI with contrast will show moderate to marked diffuse irregularity and enhancement of involved structures. T2 weighted imaging with fat suppression will show iso- or slight hyperintensity compared to muscle. There is also decreased signal intensity compared to most orbital lesions due to cellular infiltrate and fibrosis. In chronic disease or sclerosing variant, T2WI with FS will show hypointensity (due to fibrosis). Findings on STIR (Short T1 Inversion Recovery) are similar to those on T2WI FS. In Tolosa–Hunt syndrome, findings include enhancement and fullness of the anterior cavernous sinus and superior orbital fissure in T1WI with contrast, while MRA may show narrowing of cavernous sinus internal carotid artery (ICA).
Ultrasonographic findings
On grayscale ultrasound there is reduced reflectivity, regular internal echoes, and weak attenuation, in a way, similar to lymphoproliferative lesions.
Proximal muscle weakness, characteristic skin rash and elevated muscle enzymes are routinely used to identify JDM. Typical magnetic resonance imaging and muscle biopsy changes are considered the next most useful diagnostic criteria, followed by myopathic changes on electromyogram, calcinosis, dysphonia and nailfold capillaroscopy. Other useful criteria include myositis-specific or -related antibodies, nailfold capillaroscopy, factor VIII-related antigen, muscle ultrasound, calcinosis and neopterin.
The radiological features of myositis ossificans are ‘faint soft tissue calcification within 2–6 weeks, (may have well-defined
bony margins by 8 weeks) separated from periosteum by lucent zone and on CT, the characteristic feature is peripheral ossification’.
Polymyositis, like dermatomyositis, strikes females with greater frequency than males.
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
Condition predisposing to anaerobic infections include: exposure of a sterile body location to a high inoculum of indigenous bacteria of mucous membrane flora origin, inadequate blood supply and tissue necrosis which lower the oxidation and reduction potential which support the growth of anaerobes. Conditions which can lower the blood supply and can predispose to anaerobic infection are: trauma, foreign body, malignancy, surgery, edema, shock, colitis and vascular disease. Other predisposing conditions include splenectomy, neutropenia, immunosuppression, hypogammaglobinemia, leukemia, collagen vascular disease and cytotoxic drugs and diabetes mellitus. A preexisting infection caused by aerobic or facultative organisms can alter the local tissue conditions and make them more favorable for the growth of anaerobes. Impairment in defense mechanisms due to anaerobic conditions can also favor anaerobic infection. These include production of leukotoxins (by "Fusobacterium" spp.), phagocytosis intracellular killing impairments (often caused by encapsulated anaerobes and by succinic acid ( produced by "Bacteroides" spp.), chemotaxis inhibition (by "Fusobacterium, Prevotella" and "Porphyromonas" spp.), and proteases degradation of serum proteins (by Bacteroides spp.) and production of leukotoxins (by "Fusobacterium" spp.).
The hallmarks of anaerobic infection include suppuration, establishment of an abscess, thrombophlebitis and gangrenous destruction of tissue with gas generation. Anaerobic bacteria are very commonly recovered in chronic infections, and are often found following the failure of therapy with antimicrobials that are ineffective against them, such as trimethoprim–sulfamethoxazole (co-trimoxazole), aminoglycosides, and the earlier quinolones.
Some infections are more likely to be caused by anaerobic bacteria, and they should be suspected in most instances. These infections include brain abscess, oral or dental infections, human or animal bites, aspiration pneumonia and lung abscesses, amnionitis, endometritis, septic abortions, tubo-ovarian abscess, peritonitis and abdominal abscesses following viscus perforation, abscesses in and around the oral and rectal areas, pus-forming necrotizing infections of soft tissue or muscle and postsurgical infections that emerge following procedures on the oral or gastrointestinal tract or female pelvic area. Some solid malignant tumors, ( colonic, uterine and bronchogenic, and head and neck necrotic tumors, are more likely to become secondarily infected with anaerobes. The lack of oxygen within the tumor that are proximal to the endogenous adjacent mucosal flora can predispose such infections.
IOI or orbital pseudotumor is the second most common cause of exophthalmos following Grave’s orbitopathy and the third most common orbital disorder following thyroid orbitopathy and lymphoproliferative disease accounting for 5–17.6% of orbital disorders, There is no age, sex, or race predilection, but it is most frequently seen in middle-aged individuals. Pediatric cases account for about 17% of all cases of IOI.
Myositis is inflammation or swelling of the muscles. Injury, medicines, infection, or an immune disorder can lead to myositis. It is a documented side effect of the lipid-lowering drugs statins and fibrates.
Diagnosis is by complete blood count (CBC). However, in some cases, a more accurate absolute eosinophil count may be needed. Medical history is taken, with emphasis on travel, allergies and drug use. Specific test for causative conditions are performed, often including chest x-ray, urinalysis, liver and kidney function tests, and serologic tests for parasitic and connective tissue diseases. The stool is often examined for traces of parasites (i.e. eggs, larvae, etc.) though a negative test does not rule out parasitic infection; for example, trichinosis requires a muscle biopsy. Elevated serum B or low white blood cell alkaline phosphatase, or leukocytic abnormalities in a peripheral smear indicates a disorder of myeloproliferation. In cases of idiopathic eosinophilia, the patient is followed for complications. A brief trial of corticosteroids can be diagnostic for allergic causes, as the eosinophilia should resolve with suppression of the immune over-response. Neoplastic disorders are diagnosed through the usual methods, such as bone marrow aspiration and biopsy for the leukemias, MRI/CT to look for solid tumors, and tests for serum LDH and other tumor markers.
Calcification is typically depicted 2 weeks earlier by ultrasound (US) when compared to radiographs. The lesion develops in two distinct stages with different presentations at US. In the early stage, termed immature, it is depicts a non-specific soft tissue mass that ranges from a hypoechoic area with an outer sheet-like hyperechoic peripheral rim to a highly echogenic area with variable shadowing. In the late stage, termed mature, myositis ossificans is depicted as an elongated calcific deposit that is aligned with the long-axis of the muscle, exhibits acoustic shadowing, and has no soft tissue mass associated. US may suggest the diagnosis at early stage, but imaging features need to evolve with successive maturation of the lesion and formation of the characteristic late stage changes before they become pathognomonic.
The differential diagnosis includes many tumoral and nontumoral pathologies. A main concern is to differentiate early myositis ossificans from malignant soft-tissue tumors, and the latter is suggested by a fast-growing process. If clinical or sonographic findings are dubious and extraosseous sarcoma is suspected, biopsy should be performed. At histology, detection of the typical zonal phenomenon is diagnostic of myositis ossificans, though microscopic findings may be misleading during the early stage.
Elevated creatine kinase (CK) levels in the blood (at most ~10 times normal) are typical in sIBM but affected individuals can also present with normal CK levels. Electromyography (EMG) studies usually display abnormalities. Muscle biopsy may display several common findings including; inflammatory cells invading muscle cells, vacuolar degeneration, inclusions or plaques of abnormal proteins. sIBM is a challenge to the pathologist and even with a biopsy, diagnosis can be ambiguous.
A diagnosis of inclusion body myositis was historically dependent on muscle biopsy results. Antibodies to cytoplasmic 5'-nucleotidase (cN1A; NT5C1A) have been strongly associated with the condition. In the clinical context of a classic history and positive antibodies, a muscle biopsy might be unnecessary.
The diagnosis of dermatomyositis is based on five criteria which are also used to differentially diagnose with respect to polymyositis:
1. Muscle weakness in both thighs or both upper arms
2. Using a blood test, finding higher levels of enzymes found in skeletal muscle, including creatinine kinase, aldolase, as well as glutamate oxaloacetate, pyruvate transaminases and lactate dehydrogenase
3. Using testing of electric signalling in muscles, finding all three of the following: erratic, repetitive high frequency signals; short, low energy signals between skeletal muscles and motor neurons that have multiple phases; and sharp activity when a needle is inserted into the muscle
4. Examining a muscle biopsy under a microscope and finding mononuclear white blood cells between the muscle cells, and finding abnormal muscle cell degeneration and regeneration, dying muscle cells, and muscle cells being consumed by other cells (phagocytosis)
5. Rashes typical of dermatomyositis, which include heliotrope rash, Gottron sign and Gottron papules
The fifth criterion is what differentiates dermatomyositis from polymyositis; the diagnosis is considered definite for dermatomyositis if three of items 1 through 4 are present in addition to 5, probable with any two in addition to 5, and possible if just one is present in addition to 5.
Dermatomyositis is associated with autoantibodies, especially antinuclear antibodies (ANA). Around 80% of people with DM test positive for ANA and around 30% of people have myositis-specific autoantibodies which include antibodies to aminoacyl-tRNA synthetases (anti-synthetase antibodies), including antibodies against Histidine—tRNA ligase (also called Jo-1); antibodies to signal recognition particle (SRP); and anti-Mi-2 antibodies.
Magnetic resonance imaging may be useful to guide muscle biopsy and to investigate involvement of internal organs; X-ray may be used to investigate joint involvement and calcifications.
A given case of dermatomyositis may be classified as amyopathic dermatomyositis if only skin is affected and there is no muscle weakness for longer than 6 months according to one 2016 review, or two years according to another.
IBM is often initially misdiagnosed as polymyositis. A course of prednisone is typically completed with no improvement and eventually sIBM is confirmed. sIBM weakness comes on over months or years and progresses steadily, whereas polymyositis has an onset of weeks or months. Other forms of muscular dystrophy (e.g. limb girdle) must be considered as well.
Dermatomyositis is a form of systemic connective tissue disorder, a class of diseases that often involve autoimmune dysfunction.
It has also been classified as an idiopathic inflammatory myopathy along with polymyositis, necrotizing autoimmune myositis, cancer-associated myositis, and sporadic inclusion body myositis.
There is a form of this disorder that strikes children, known as juvenile dermatomyositis (JDM).
In this table: ANA = Antinuclear antibodies, CRP = C-reactive protein, ESR = Erythrocyte Sedimentation Rate, "ds"DNA = double-stranded DNA, ENA = extractable nuclear antigens, RNP = ribonucleoproteins; VDRL = Venereal Disease Research Laboratory
Diagnosis is based on the characteristic appearance of non-healing raised, scaling lesions that may ulcerate and become secondarily infected with organisms such as "Staphylococcus aureus", in someone who has returned from an endemic area.
The gold standard for diagnosis is PCR (polymerase chain reaction) helps DNA polymerase to create new strands of DNA equivalent to template given.
Distinguishing laboratory characteristics are a positive, speckled anti-nuclear antibody and an anti-U1-RNP antibody.
The best treatment for cutaneous leishmaniasis is not known. Treatments that work for one species of leishmania may not work for another; it is recommended that advice of a tropical medicine or geographical medicine specialist be sought. Ideally, every effort should be made to establish the species of leishmania by molecular techniques (PCR) prior to starting treatment. In the setting of a developing country, there is often only one species present in a particular locality, so it is usually unnecessary to speciate every infection. Unfortunately, leishmaniasis is an orphan disease in developed nations, and almost all the current treatment options are toxic with significant side effects. The most sound treatment for cutaneous leishmaniasis thus far is prevention.
- "Leishmania major" :"L. major" infections are usually considered to heal spontaneously and do not require treatment, but there have been several reports of severe cases caused by "L. major" in Afghanistan. In Saudi Arabia, a six-week course of oral fluconazole 200 mg daily has been reported to speed up healing. In a randomized clinical trial from Iran, fluconazole 400 mg daily was shown to be significantly more effective than fluconazole 200 mg daily in the treatment of cutaneous leishmaniasis.
- "Leishmania braziliensis" :Treatment with pentavalent antimonials or amphotericin is necessary, because of the risk of developing disfiguring mucocutaneous lesions.
- "Leishmania infantum" :"L. infantum" causes cutaneous leishmaniasis in southern France.
New treatment options are arising from the new oral drug miltefosine (Impavido) which has shown in several clinical trials to be very efficient and safe in visceral and cutaneous leishmaniasis. Recent studies from Bolivia show a high cure rate for mucocutaneous leishmaniasis. Comparative studies against pentavalent antimonials in Iran and Pakistan are also beginning to show a high cure rate for "L. major" and "L. tropica". It is registered in many countries of Latin America, as well in Germany. In October 2006 it received orphan drug status from the US Food and Drug administration. The drug is generally better tolerated than other drugs. Main side effects are gastrointestinal disturbances in the 1–2 days of treatment which does not affect the efficacy.
Secondary bacterial infection (especially with "Staphylococcus aureus") is common and may require antibiotics. Clinicians who are unfamiliar with cutaneous leishmaniasis may mistake the lesion for a pure bacterial infection (especially after isolation of "S. aureus" from bacterial skin swabs) and fail to consider the possibility of leishmaniasis.