Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
Many doctors commonly recommend a combined treatment of: a warm compress applied to the eyes (to relieve muscle tension, relax the muscles, and reduce swelling); a small dosage of antihistamine (to reduce any swelling that may be caused by an allergic reaction); increase bed rest (to allow muscles to rest); decrease exposure to computer screens, televisions, or harsh lighting (to allow muscles to rest); and monitor caffeine intake (too much caffeine can cause an adverse reaction such as eye twitching, but a controlled dose can serve as an effective treatment by increasing blood flow).
Diagnosis is clinical and initially consists of ruling out more common conditions, disorders, and diseases, and usually begins at the general practitioner level. A doctor may conduct a basic neurological exam, including coordination, strength, reflexes, sensation, etc. A doctor may also run a series of tests that include blood work and MRIs.
From there, a patient is likely to be referred to a neurologist or a neuromuscular specialist. The neurologist or specialist may run a series of more specialized tests, including needle electromyography EMG/ and nerve conduction studies (NCS) (these are the most important tests), chest CT (to rule out paraneoplastic) and specific blood work looking for voltage-gated potassium channel antibodies, acetylcholine receptor antibody, and serum immunofixation, TSH, ANA ESR, EEG etc. Neuromyotonia is characterized electromyographically by doublet, triplet or multiplet single unit discharges that have a high, irregular intraburst frequency. Fibrillation potentials and fasciculations are often also present with electromyography.
Because the condition is so rare, it can often be years before a correct diagnosis is made.
NMT is not fatal and many of the symptoms can be controlled. However, because NMT mimics some symptoms of motor neuron disease (ALS) and other more severe diseases, which may be fatal, there can often be significant anxiety until a diagnosis is made. In some rare cases, acquired neuromyotonia has been misdiagnosed as amyotrophic lateral sclerosis (ALS) particularly if fasciculations may be evident in the absence of other clinical features of ALS. However, fasciculations are rarely the first sign of ALS as the hallmark sign is weakness. Similarly, multiple sclerosis has been the initial misdiagnosis in some NMT patients. In order to get an accurate diagnosis see a trained neuromuscular specialist.
Neuromyotonia is a type of peripheral nerve hyperexcitability. Peripheral nerve hyperexcitability is an umbrella diagnosis that includes (in order of severity of symptoms from least severe to most severe) benign fasciculation syndrome, cramp fasciculation syndrome, and neuromyotonia. Some doctors will only give the diagnosis of peripheral nerve hyperexcitability as the differences between the three are largely a matter of the severity of the symptoms and can be subjective. However, some objective EMG criteria have been established to help distinguish between the three.
Moreover, the generic use of the term "peripheral nerve hyperexcitability syndromes" to describe the aforementioned conditions is recommended and endorsed by several prominent researchers and practitioners in the field.
Breathing difficulties can occur, resulting from neuromyotonic activity of the laryngeal muscles. Laryngeal spasm possibly resulting from neuromyotonia has been described previously, and this highlights that, in patients with unexplained laryngospasm, neuromytonia should be added to the list of differential diagnoses.
Studies have shown subtly decreased metabolism on positron emission tomography (PET) and single photon emission computed tomography (SPECT) in the left inferior frontal and left temporal lobes. and or basal ganglia hypermetabolism. Ancillary laboratory tests including MRI and brain biopsy have confirmed temporal lobe involvement. Cranial MRI shows increased signal in the hippocampus.
Cerebral spinal fluid (CSF) shows normal protein, glucose, white blood cell, and IgG index but there are weak oligoclonal bands, absent in the blood. Marked changes in circadian serum levels of neurohormones and increased levels of peripheral neurotransmitters were also observed. The absence of morphological alterations of the brain pathology, the suggestion of diffusion of IgG into the thalamus and striatum, more marked than in the cortex (consistent with effects on the thalamolimbic system) the oligoclonal bands in the CSF and the amelioration after PE all strongly support an antibody-mediated basis for the condition. Raised CSF IgG concentrations and oligoclonal bands have been reported in patients with psychosis. Anti-acetylcholine receptors (anti-AChR) antibodies have also been detected in patients with thymoma, but without clinical manifestations of myasthenia gravis. There have also been reports of non-paraneoplastic limbic encephalitis associated with raised serum VGKC suggesting that these antibodies may give rise to a spectrum of neurological disease presenting with symptoms arising peripherally, centrally, or both. Yet, in two cases, oligoclonal bands were absent in the CSF and serum, and CSF immunoglobulin profiles were unremarkable.
Frequent contributing factors include: too much caffeine, high levels of anxiety, fatigue, dehydration, stress, overwork, and a lack of sleep. Use of certain drugs or alcohol may also be factors.
Magnesium deficiency.
Episodic ataxia (EA) is an autosomal dominant disorder characterized by sporadic bouts of ataxia (severe discoordination) with or without myokymia (continuous muscle movement). There are seven types recognised but the majority are due to two recognized entities. Ataxia can be provoked by stress, startle, or heavy exertion such as exercise. Symptoms can first appear in infancy. There are at least 6 loci for EA, of which 4 are known genes. Some patients with EA also have migraine or progressive cerebellar degenerative disorders, symptomatic of either familial hemiplegic migraine or spinocerebellar ataxia. Some patients respond to acetazolamide though others do not.
In most of the reported cases, the treatment options were very similar. Plasmapheresis alone or in combination with steroids, sometimes also with thymectomy and azathioprine, have been the most frequently used therapeutic approach in treating Morvan’s Syndrome. However, this does not always work, as failed response to steroids and to subsequently added plasmapheresis have been reported. Intravenous immunoglobulin was effective in one case.
In one case, the dramatic response to high-dose oral prednisolone together with pulse methylprednisolone with almost complete disappearance of the symptoms within a short period should induce consideration of corticosteroids.
In another case, the subject was treated with haloperidol (6 mg/day) with some improvement in the psychomotor agitation and hallucinations, but even high doses of carbamazepine given to the subject failed to improve the spontaneous muscle activity. Plasma Exchange (PE) was initiated, and after the third such session, the itching, sweating, mental disturbances, and complex nocturnal behavior improved and these symptoms completely disappeared after the sixth session, with improvement in insomnia and reduced muscle twitching. However, one month after the sixth PE session, there was a progressive worsening of insomnia and diurnal drowsiness, which promptly disappeared after another two PE sessions.
In one case there high dose steroid treatment resulted in a transient improvement, but aggressive immuno-suppressive therapy with cyclophosphamide was necessary to control the disease and result in a dramatic clinical improvement.
In another case, the subject was treated with prednisolone (1 mg/kg body weight) with carbamazepine, propanolol, and amitriptyline. After two weeks, improvement with decreased stiffness and spontaneous muscle activity and improved sleep was observed. After another 7–10 days, the abnormal sleep behavior disappeared completely.
In another case, symptomatic improvement with plasmapheresis, thymectomy, and chronic immunosuppression provide further support for an autoimmune or paraneoplastic basis.
Although thymectomy is believed to be a key element in the proposed treatment, there is a reported case of Morvan’s Syndrome presenting itself post-thymectomy.
Treatment can include pharmaceutical or surgical means. The drug carbamazepine (Tegretol) has been used successfully. Other drugs used with variable success include gabapentin and, recently, memantine. Successful surgery options include superior oblique tenectomy accompanied by inferior oblique myectomy. However, "Overall, the bulk of the ophthalmic literature would agree with the viewpoint that invasive craniotomy surgical procedures should be justified only by the presence of intractable and absolutely unbearable symptoms."
Samii et al. and Scharwey and Samii described a patient who had superior oblique myokymia for 17 years. The interposition of a Teflon pad between the trochlear nerve and a compressing artery and vein at the nerve's exit from the midbrain led to a remission lasting for a follow-up of 22 months.
The health care provider will perform a physical exam. Detailed questions will be asked about the symptoms.
If a streptococcus infection is suspected, tests will be done to confirm the infection. These include:
- Throat swab
- Anti-DNAse B blood test
- Antistreptolysin O (ASO) blood test
Further testing may include:
- Blood tests such as ESR, CBC
- MRI or CT scan of the brain
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
MRI Brain: shows only evidence of small vessel disease, and normal in 92% of patients.
EEG: Nonspecific slow wave abnormality. Polysomnography shows complete absence of sleep.
Antigenic Source: VGKC-complex antibodies were present in 23 of 29 (79%), CASPR2, LGI1 antibodies, or both, CASPR2 antibodies were generally higher titer than LGI1 antibodies and associated with thymoma. LGI1 antibodies were associated with serum hyponatremia.
In 1983, Bringewald postulated that superior oblique myokymia resulted from vascular compression of the trochlear nerve (fourth cranial nerve), which controls the action of the superior oblique muscle in the eye. By 1998, there had been only one reported case of compression of the trochlear nerve by vessels.
More recently, magnetic resonance imaging experiments have shown that neurovascular compression at the root exit zone of the trochlear nerve can result in superior oblique myokymia.
Treatment of Sydenham's Chorea is based on the following principles:
1. The first tenet of treatment is to eliminate the streptococcus at a primary, secondary and tertiary level. Strategies involve the adequate treatment of throat and skin infections, with a course of penicillin when Sydenham's Chorea is newly diagnosed, followed by long-term penicillin prophylaxis. Behavioural and emotional changes may precede the movement disorders in a previously well child.
2. Treatment of movement disorders. Therapeutic efforts are limited to palliation of the movement disorders. Haloperidol is frequently used because of its anti-dopaminergic effect. It has serious potential side-effects, e.g., tardive dyskinesia. In a study conducted at the RFC, 25 out of 39 patients on haloperidol reported side-effects severe enough to cause the physician or parent to discontinue treatment or reduce the dose. Other medications which have been used to control the movements include pimozide, clonidine, valproic acid, carbamazepine and phenobarbitone.
3. Immunomodulatory interventions include steroids, intravenous immunoglobulins, and plasma exchange. Patients may benefit from treatment with steroids; controlled clinical trials are indicated to explore this further.
4. There are several historical case series reporting successful treatment of Sydenham's Chorea by inducing fever.