Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Myelitis has an extensive differential diagnosis. The type of onset (acute versus subacute/chronic) along with associated symptoms such as the presence of pain, constitutional symptoms that encompass fever, malaise, weight loss or a cutaneous rash may help identify the cause of myelitis. In order to establish a diagnosis of myelitis, one has to localize the spinal cord level, and exclude cerebral and neuromuscular diseases. Also a detailed medical history, a careful neurologic examination, and imaging studies using magnetic resonance imaging (MRI) are needed. In respect to the cause of the process, further work-up would help identify the cause and guide treatment. Full spine MRI is warranted, especially with acute onset myelitis, to evaluate for structural lesions that may require surgical intervention, or disseminated disease. Adding gadolinium further increases diagnostic sensitivity. A brain MRI may be needed to identify the extent of central nervous system (CNS) involvement. Lumbar puncture is important for the diagnosis of acute myelitis when a tumoral process, inflammatory or infectious cause are suspected, or the MRI is normal or non-specific. Complementary blood tests are also of value in establishing a firm diagnosis. Rarely, a biopsy of a mass lesion may become necessary when the cause is uncertain. However, in 15–30% of people with subacute or chronic myelitis, a clear cause is never uncovered.
Since each case is different, the following are possible treatments that patients might receive in the management of myelitis.
- Intravenous steroids
High-dose intravenous methyl-prednisolone for 3–5 days is considered as a standard of care for patients suspected to have acute myelitis, unless there are compelling reasons otherwise. The decision to offer continued steroids or add a new treatment is often based on the clinical course and MRI appearance at the end of 5 days of steroids.
- Plasma exchange (PLEX)
Patients with moderate to aggressive forms of disease who don’t show much improvement after being treated with intravenous and oral steroids will be treated with PLEX. Retrospective studies of patients with TM treated with IV steroids followed by PLEX showed a positive outcome. It also has been shown to be effective with other autoimmune or inflammatory central nervous system disorders. Particular benefit has been shown with patients who are in the acute or subacute stage of the myelitis showing active inflammation on MRI. However, because of the risks implied by the lumbar puncture procedure, this intervention is determined by the treating physician on a case-by-case basis.
- Immunosuppressants/Immunomodulatory agents
Myelitis with no definite cause seldom recurs, but for others, myelitis may be a manifestation of other diseases that are mentioned above. In these cases, ongoing treatment with medications that modulate or suppress the immune system may be necessary. Sometimes there is no specific treatment. Either way, aggressive rehabilitation and long-term symptom management are an integral part of the healthcare plan.
The Mayo Clinic proposed a revised set of criteria for diagnosis of Devic's disease in 2006. Those new guidelines require two absolute criteria plus at least two of three supportive criteria. In 2015 a new review was published by an international panel refining the previous clinical case definition but leaving the main criteria unmodified:
Absolute criteria:
1. Optic neuritis
2. Acute myelitis
Supportive criteria:
1. Brain MRI not meeting criteria for MS at disease onset
2. Spinal cord MRI with continuous T2-weighted signal abnormality extending over three or more vertebral segments, indicating a relatively large lesion in the spinal cord
3. NMO-IgG seropositive status (The NMO-IgG test checks the existence of antibodies against the aquaporin 4 antigen.)
AQP4-Ab-negative NMO presents problems for diagnosis. The behavior of the oligoclonal bands respect MS can help to establish a more accurate diagnosis. Oligoclonal bands in NMO are rare and they tend to disappear after the attacks, while in MS they are nearly always present and persistent.
It is important to notice for differential diagnosis that, though uncommon, it is possible to have longitudinal lesions in MS
Other problem for diagnosis is that AQP4ab in MOGab levels can be too low to be detected. Some additional biomarkers have been proposed.
Below are various methods/techniques used to diagnose demyelinating diseases.
- Exclusion of other conditions that have overlapping symptoms
- Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize internal structures of the body in detail. MRI makes use of the property of nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. This method is reliable because MRIs assess changes in proton density. "Spots" can occur as a result of changes in brain water content.
- Evoked potential is an electrical potential recorded from the nervous system following the presentation of a stimulus as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiological recording method.
- Cerebrospinal fluid analysis (CSF) can be extremely beneficial in the diagnosis of central nervous system infections. A CSF culture examination may yield the microorganism that caused the infection.
- Quantitative proton magnetic resonance spectroscopy (MRS) is a non-invasive analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's disease, depression and other diseases affecting the brain. It has also been used to study the metabolism of other organs such as muscles.
- Diagnostic criteria refers to a specific combination of signs, symptoms, and test results that the clinician uses in an attempt to determine the correct diagnosis.
- Fluid-attenuated inversion recovery (FLAIR) uses a pulse sequence to suppress cerebrospinal fluid and show lesions more clearly, and is used for example in multiple sclerosis evaluation.
The CDC MMWR report advised, "To prevent infections in general, persons should stay home if they are ill, wash their hands often with soap and water, avoid close contact (such as touching and shaking hands) with those who are ill, and clean and disinfect frequently touched surfaces."
Unlike polio, acute flaccid myelitis can not currently be prevented with a vaccine.
Myelopathy is primarily diagnosed by clinical exam findings. Because the term "myelopathy" describes a clinical syndrome that can be caused by many pathologies the differential diagnosis of myelopathy is extensive. In some cases the onset of myelopathy is rapid, in others, such as CSM, the course may be insidious with symptoms developing slowly over a period of months. As a consequence, the diagnosis of CSM is often delayed. As the disease is thought to be progressive, this may impact negatively on outcome.
Once the clinical diagnosis "myelopathy" has been established, the underlying cause needs to be investigated. Most commonly this involves the use of medical imaging techniques. The best way of visualising the spinal cord is Magnetic Resonance Imaging (MRI). Apart from T1 and T2 MRI images, which are commonly used for routine diagnosis, more recently the use quantitative MRI signals is being investigated. Further imaging modalities used for evaluating myelopathy include plain X-rays for detecting arthritic changes of the bones, and Computer Tomography, which is often used for pre-operative planning of surgical interventions for cervical spondylotic myelopathy. Angiography is used to examine blood vessels in suspected cases of vascular myelopathy.
The presence and severity of myelopathy can also be evaluated by means of Transcranial Magnetic Stimulation (TMS), a neurophysiological method that allows the measurement of the time required for a neural impulse to cross the pyramidal tracts, starting from the cerebral cortex and ending at the anterior horn cells of the cervical, thoracic or lumbar spinal cord. This measurement is called "Central Conduction Time" ("CCT"). TMS can aid physicians to:
- determine whether myelopathy exists
- identify the level of the spinal cord where myelopathy is located. This is especially useful in cases where more than two lesions may be responsible for the clinical symptoms and signs, such as in patients with two or more cervical disc hernias
- follow-up the progression of myelopathy in time, for example before and after cervical spine surgery
TMS can also help in the differential diagnosis of different causes of pyramidal tract damage.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.
Demyelinating diseases can be divided in those affecting the central nervous system and those presents in the peripheral nervous system, presenting different demyelination conditions. They can also be divided by other criteria in inflammatory and non-inflammatory, according to the presence or lack of inflammation, and finally, a division can also be made depending on the underlying reason for demyelination in myelinoclastic (myelin is attacked by an external substance) and leukodystrophic (myelin degenerates without attacks)
Six of ten children in Denver were sent home for outpatient treatment; some with mild symptoms have recovered from temporary limb weakness, while the fate of those more severely affected remains unclear. Intensive physical therapy and occupational therapy may be beneficial for recovery.
Also inside standard MS different clinical courses can be separated.
In the US, neuroborreliosis is typically treated with intravenous antibiotics which cross the blood–brain barrier, such as penicillins, ceftriaxone, or cefotaxime. One relatively small randomized controlled trial suggested ceftriaxone was more effective than penicillin in the treatment of neuroborreliosis. Small observational studies suggest ceftriaxone is also effective in children. The recommended duration of treatment is 14 to 28 days.
Several studies from Europe have suggested oral doxycycline is equally as effective as intravenous ceftriaxone in treating neuroborreliosis. Doxycycline has not been widely studied as a treatment in the US, but antibiotic sensitivities of prevailing European and US isolates of "Borrelia burgdorferi" tend to be identical. However, doxycycline is generally not prescribed to children due to the risk of bone and tooth damage.
Discreditied or doubtful treatments for neuroborreliosis include:
- Malariotherapy
- Hyperbaric oxygen therapy
- Colloidal silver
- Injections of hydrogen peroxide and bismacine
A radiographic evaluation using an X-ray, CT scan, or MRI can determine if there is damage to the spinal column and where it is located. X-rays are commonly available and can detect instability or misalignment of the spinal column, but do not give very detailed images and can miss injuries to the spinal cord or displacement of ligaments or disks that do not have accompanying spinal column damage. Thus when X-ray findings are normal but SCI is still suspected due to pain or SCI symptoms, CT or MRI scans are used. CT gives greater detail than X-rays, but exposes the patient to more radiation, and it still does not give images of the spinal cord or ligaments; MRI shows body structures in the greatest detail. Thus it is the standard for anyone who has neurological deficits found in SCI or is thought to have an unstable spinal column injury.
Neurological evaluations to help determine the degree of impairment are performed initially and repeatedly in the early stages of treatment; this determines the rate of improvement or deterioration and informs treatment and prognosis. The ASIA Impairment Scale outlined above is used to determine the level and severity of injury.
Some NMO patients present double positive for autoantibodies to AQP4 and MOG. These patients have MS-like brain lesions, multifocal spine lesions and retinal and optic nerves atrophy.
CNS demyelinating autoimmune diseases are autoimmune diseases which primarily affect the central nervous system.
Examples include:
- Diffuse cerebral sclerosis of Schilder
- Acute disseminated encephalomyelitis
- Acute hemorrhagic leukoencephalitis
- Multiple sclerosis (though the cause is unknown, it is sure that immune system is involved)
- Transverse myelitis
- Neuromyelitis optica
Transverse myelitis is a neurological condition in which the spinal cord is inflamed. The inflammation damages nerve fibers, and causes them to lose their myelin coating leading to decreased electrical conductivity in the central nervous system. "Transverse" implies that the inflammation extends across the entire width of the spinal cord. Partial transverse myelitis and partial myelitis are terms used to define inflammation of the spinal cord that affects part of the width of the spinal cord.
Current or previous infection can be detected through a blood test. However, some authors note that such complement-fixation tests are insensitive and should not be used for diagnosis. Dr. Clare A. Dykewicz, "et al." state,
Clinical diagnosis of LCM can be made by the history of prodrome symptoms and by considering the period of time before the onset of meningitis symptoms, typically 15–21 days for LCM.
Pathological diagnosis of congenital infection is performed using either an immunofluorescent antibody (IFA) test or an enzyme immunoassay to detect specific antibody in blood or cerebrospinal fluid. A PCR assay has been recently developed which may be used in the future for prenatal diagnosis; however, the virus is not always present in the blood or CSF when the affected child is born." Diagnoses is subject to methodological shortcomings in regard to specificity and sensitivity of assays used. For this reason, LCMV may be more common than is realized.
Another detection assay is the reverse transcription polymerase chain reaction (RT-PCR) tests which may detect nucleic acids in the blood and cerebrospinal fluid.(CSF) Virus isolation is not used for diagnosis in most cases but it can be isolated from the blood or nasopharyngeal fluid early in the course of the disease, or from CSF in patients with meningitis. LCMV can be grown in a variety of cell lines including BHK21, L and Vero cells, and it may be identified with immuno-fluorescence. A diagnosis can also be made by the intracerebral inoculation of blood or CSF into mice.
The first stage in the management of a suspected spinal cord injury is geared toward basic life support and preventing further injury: maintaining airway, breathing, and circulation and immobilizing the spine.
In the emergency setting, anyone who has been subjected to forces strong enough to cause SCI is treated as though they have instability in the spinal column and is immobilized to prevent damage to the spinal cord. Injuries or fractures in the head, neck, or pelvis as well as penetrating trauma near the spine and falls from heights are assumed to be associated with an unstable spinal column until it is ruled out in the hospital. High-speed vehicle crashes, sports injuries involving the head or neck, and diving injuries are other mechanisms that indicate a high SCI risk. Since head and spinal trauma frequently coexist, anyone who is unconscious or has a lowered level of consciousness as a result of a head injury is immobilized.
A rigid cervical collar is applied to the neck, and the head is held immobile with blocks on either side and the person is strapped to a backboard. Extrication devices are used to move people without moving the spine if they are still inside a vehicle or other confined space.
Modern trauma care includes a step called clearing the cervical spine, ruling out spinal cord injury if the patient is fully conscious and not under the influence of drugs or alcohol, displays no neurological deficits, has no pain in the middle of the neck and no other painful injuries that could distract from neck pain. If these are all absent, no immobilization is necessary.
If an unstable spinal column injury is moved, damage may occur to the spinal cord. Between 3 and 25% of SCIs occur not at the time of the initial trauma but later during treatment or transport. While some of this is due to the nature of the injury itself, particularly in the case of multiple or massive trauma, some of it reflects the failure to immobilize the spine adequately.
SCI can impair the body's ability to keep warm, so warming blankets may be needed.
There are disturbances in sensory nerves and motor nerves and dysfunction of the autonomic nervous system at the level of the lesion or below. Therefore, the signs and symptoms depend on the area of spine involved:
- Cervical: If the upper cervical cord is involved, all four limbs may be involved and there is risk of respiratory paralysis (cervical nerve segments C3, 4, 5 innervate the abdominal diaphragm). Lesions of the lower cervical (C5–T1) region will cause a combination of upper and lower motor neuron signs in the upper limbs, and exclusively upper motor neuron signs in the lower limbs. Cervical lesions account for about 20% of cases.
- Thoracic: A lesion of the thoracic spinal cord (T1–12) will produce upper motor neuron signs in the lower limbs, presenting as a spastic diplegia. This is the most common location of the lesion,
Neuroborreliosis, also known as Lyme neuroborreliosis (LNB), is a disorder of the central nervous system. A neurological manifestation of Lyme disease, neuroborreliosis is caused by a systemic infection of spirochetes of the genus "Borrelia." Symptoms of the disease include erythema migrans and flu-like symptoms. The microbiological progression of the disease is similar to that of neurosyphilis, another spirochetal infection.
Shingles can be confused with herpes simplex, dermatitis herpetiformis and impetigo, and skin reactions caused by contact dermatitis, candidiasis, certain drugs and insect bites.
As in humans, the sensitivity of testing methods for rodents contributes to the accuracy of diagnosis. LCMV is typically identified through serology. However, in an endemically infected colony, more practical methods include MAP (mouse antibody production) and PCR testing. Another means of diagnosis is introducing a known naïve adult mouse to the suspect rodent colony. The introduced mouse will seroconvert, allowing use of immunofluorescence antibody (IFA), MFIA or ELISA to detect antibodies.
Based on the presence of extraocular findings, such as neurological, auditory and integumentary manifestations, the "revised diagnostic criteria" of 2001 classify the disease as complete (eyes along with both neurological and skin), incomplete (eyes along with either neurological or skin) or probable (eyes without either neurological or skin) . By definition, for research homogeneity purposes, there are two exclusion criteria: previous ocular penetrating trauma or surgery, and other concomitant ocular disease similar to VKH disease.
If tested in the prodromal phase, CSF pleocytosis is found in more than 80%, mainly lymphocytes. This pleocytosis resolves in about 8 weeks even if chronic uveitis persists.
Functional tests may include electroretinogram and visual field testing. Diagnostic confirmation and an estimation of disease severity may involve imaging tests such as retinography, fluorescein or indocyanine green angiography, optical coherence tomography and ultrasound. For example, indocyanine green angiography may detect continuing choroidal inflammation in the eyes without clinical symptoms or signs. Ocular MRI may be helpful and auditory symptoms should undergo audiologic testing. Histopathology findings from eye and skin are discussed by Walton.
The diagnosis of VKH is based on the clinical presentation; the diagnostic differential is extensive, and includes (almong others) sympathetic ophthalmia, sarcoidosis, primary intraocular B-cell lymphoma, posterior scleritis, uveal effusion syndrome, tuberculosis, syphilis, and multifocal choroidopathy syndromes.
Spinal arteriovenous malformations (AVMs, or angiomatous malformations) are congenital (from birth) abnormalities of blood vessels. Arteries that directly communicate with veins bypass the capillary network (which has not yet developed) and thus creates a shunt. AVMs appear as a mass of , dilated vessels. In regards to the spinal cord, they are usually located in the thoracolumbar region (between the thoracic and lumbar regions, 60% of the time), as opposed to the upper thoracic (20%) and cervical regions (approximately 15%). Cervical malformations arise from the anterior spinal artery and lie within the cord, whereas thoracolumbar malformations can be internal, external or encompass both areas of the cord.
Malformations can be recognised as part of an acute illness or gradual onset disease. In diseases such as subarachnoid hemorrhage, signs and symptoms include headache, neck stiffness and back and leg pain. Extradural, subdural and intramedullary hematomas are all signs of acute cord compression. Gradual onset diseases are more common (85-90% of all diseases leading to a diagnosis of malformation) and are usually due to an increased venous pressure. Other factors such as thrombosis or arachnoiditis can be involved. A bruit (unusual blood sounds) may be heard overlying the spinal arteriovenous malformation. Very occasionally, nevus (moles) or angiolipomas are found.
Myelography is used to confirm the diagnosis of AVMs and it shows 'snake-like' vessels on the cord's surface. If the myelogram is positive, angiography is required to show the extent of malformation and the exact site of the shunt. Magnetic resonance imaging (MRI) may show the appropriate area. If AVMs are left untreated, 50% of patients with gradual symptoms will be unable to walk within 3 years of onset. Operations can prevent progression and may improve any gait or incontinence.