Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Traditionally, genetic abnormalities in neurodevelopmental disorders were detected using karyotype analysis, which found 5% of relevant disorders. , chromosomal microarray analysis (CMA) has replaced karyotyping, because of its greater diagnostic yield in about 20% of cases, detecting smaller chromosome abnormalities. It is the first line genomic test.
New descriptions include the term Copy-number variants (CNVs), which are losses or gains of chromosomal regions greater than 1 kb in length. CNVs are mentioned with the chromosomal band(s) they involve and their genome sequence coordinates. CNVs can be nonrecurrent and recurrent.
With CMA costs of testing have increased from 800 US$ to 1500$. Guidelines from the American College of Medical Genetics and Genomics and the American Academy of Pediatrics recommend CMA as standard of care in the US.
Neurodevelopmental disorders are in their multitude associated with widely varying degrees of difficulty, depending on which there are different degrees of mental, emotional, physical, and economic consequences for individuals, and in turn families, groups and society.
ASD can be detected as early as 18 months or even younger in some cases. A reliable diagnosis can usually be made by the age of two years. The diverse expressions of ASD symptoms pose diagnostic challenges to clinicians. Individuals with an ASD may present at various times of development (e.g., toddler, child, or adolescent), and symptom expression may vary over the course of development. Furthermore, clinicians must differentiate among pervasive developmental disorders, and may also consider similar conditions, including intellectual disability not associated with a pervasive developmental disorder, specific language disorders, ADHD, anxiety, and psychotic disorders.
Considering the unique challenges in diagnosing ASD, specific practice parameters for its assessment have been published by the American Academy of Neurology, the American Academy of Child and Adolescent Psychiatry, and a consensus panel with representation from various professional societies. The practice parameters outlined by these societies include an initial screening of children by general practitioners (i.e., "Level 1 screening") and for children who fail the initial screening, a comprehensive diagnostic assessment by experienced clinicians (i.e. "Level 2 evaluation"). Furthermore, it has been suggested that assessments of children with suspected ASD be evaluated within a developmental framework, include multiple informants (e.g., parents and teachers) from diverse contexts (e.g., home and school), and employ a multidisciplinary team of professionals (e.g., clinical psychologists, neuropsychologists, and psychiatrists).
After a child shows initial evidence of ASD tendencies, psychologists administer various psychological assessment tools to assess for ASD. Among these measurements, the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) are considered the "gold standards" for assessing autistic children. The ADI-R is a semi-structured parent interview that probes for symptoms of autism by evaluating a child's current behavior and developmental history. The ADOS is a semistructured interactive evaluation of ASD symptoms that is used to measure social and communication abilities by eliciting several opportunities (or "presses") for spontaneous behaviors (e.g., eye contact) in standardized context. Various other questionnaires (e.g., The Childhood Autism Rating Scale, Autism Treatment Evaluation Checklist) and tests of cognitive functioning (e.g., The Peabody Picture Vocabulary Test) are typically included in an ASD assessment battery.
In the UK, there is some diagnostic use of the Diagnostic Interview for Social and Communication Disorders (DISCO) was which was developed for use at The Centre for Social and Communication Disorders, by Lorna Wing and Judith Gould, as both a clinical and a research instrument for use with children and adults of any age. The DISCO is designed to elicit a picture of the whole person through the story of their development and behaviour. In clinical work, the primary purpose is to facilitate understanding of the pattern over time of the specific skills and impairments that underlie the overt behaviour. If no information is available, the clinician has to obtain as much information as possible concerning the details of current skills and pattern of behaviour of the person. This type of dimensional approach to clinical description is useful for prescribing treatment.
This is an ill-defined disorder of uncertain nosological validity. The category is included here because of the evidence that children with moderate to severe intellectual disability (IQ below 35) who exhibit major problems in hyperactivity and inattention frequently show stereotyped behaviours; such children tend not to benefit from stimulant drugs (unlike those with an IQ in the normal range) and may exhibit a severe dysphoric reaction (sometimes with psychomotor retardation) when given stimulants; in adolescence the overactivity tends to be replaced by underactivity (a pattern that is not usual in hyperkinetic children with normal intelligence). It is also common for the syndrome to be associated with a variety of developmental delays, either specific or global. The extent to which the behavioural pattern is a function of low IQ or of organic brain damage is not known, neither is it clear whether the disorders in children with mild intellectual disability who show the hyperkinetic syndrome would be better classified here or under F90.- (Hyperkinetic disorders); at present they are included in F90-.
Diagnostic guidelines
Diagnosis depends on the combination of developmentally inappropriate severe overactivity, motor stereotypies, and moderate to severe intellectual disability; all three must be present for the diagnosis. If the diagnostic criteria for F84.0 (childhood autism), F84.1 (atypical autism) or F84.2 (Rett's syndrome) are met, that condition should be diagnosed instead.
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
There is a division among doctors on the use of the term PDD. Many use the term PDD as a short way of saying PDD-NOS. Others use the general category because the term PDD actually refers to a category of disorders and is not a diagnostic label.
PDD is not itself a diagnosis, while PDD-NOS is a diagnosis. To further complicate the issue, PDD-NOS can also be referred to as "atypical personality development", "atypical PDD", or "atypical Autism".
Because of the "NOS", which means "not otherwise specified", it is hard to describe what PDD-NOS is, other than its being an autism spectrum disorder (ASD). Some people diagnosed with PDD-NOS are close to having Asperger syndrome, but do not quite fit. Others have near full-fledged autism, but without some of its symptoms. The psychology field is considering creating several subclasses within PDD-NOS.
Medical diagnosis is required. Clinical tests can be performed, as well as molecular genetic testing. The available tests include:
Sequence analysis of the entire coding region
- Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) - Sanger Sequencing: Diagnosis, Mutation Confirmation, Pre-symptomatic, Risk Assessment, Screening
- Craniosynostosis: Diagnosis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Mutation scanning of select exons
- Skeletal Dysplasia Panel: Diagnosis, Prognostic
Sequence analysis of select exons
- Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN, FGFR3): Diagnosis, Mutation Confirmation, Risk Assessment
- Severe Achondroplasia, Developmental Delay, Acanthosis Nigricans: Diagnosis, Mutation Confirmation
Deletion/duplication analysis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Life with SADDAN is manageable, although therapy, surgery, and lifelong doctor surveillance may be required.
Studies suggest that persons with PDD-NOS belong to one of three very different subgroups:
- A high-functioning group (around 25 percent) whose symptoms largely overlap with that of Asperger syndrome, but who differ in terms of having a lag in language development and/or mild cognitive impairment. (The criteria for Asperger syndrome excludes a speech delay or a cognitive impairment.)
- A group (around 25 percent) whose symptoms more closely resemble those of autism spectrum disorder, but do not fully meet all its diagnostic signs and symptoms.
- The biggest group (around 50 percent) consists of those who meet all the diagnostic criteria for autism spectrum disorder, but whose stereotypical and repetitive behaviors are noticeably mild.
The pervasive developmental disorders are:
- Pervasive developmental disorder not otherwise specified (PDD-NOS), which includes atypical autism, and is the most common (47% of diagnoses);
- Autism, the best-known;
- Asperger syndrome (9% of autism diagnoses);
- Rett syndrome; and
- Childhood disintegrative disorder (CDD).
The first three of these disorders are commonly called the autism spectrum disorders; the last two disorders are much rarer, and are sometimes placed in the autism spectrum and sometimes not.
In May 2013, the "Diagnostic and Statistical Manual-Fifth Edition" ("DSM-5") was released, updating the classification for pervasive developmental disorders. The grouping of disorders, including PDD-NOS, Autism, Asperger Syndrome, Rett Syndrome, and CDD, has been removed and replaced with the general term of Autism Spectrum Disorders. The American Psychiatric Association has concluded that using the general diagnosis of ASD supports more accurate diagnoses. The combination of these disorders was also fueled by the standpoint that Autism is characterized by common symptoms and should therefore bear a single diagnostic term. In order to distinguish between the different disorders, the DSM-5 employs severity levels. The severity levels take into account required support, restricted interests and repetitive behaviors, and deficits in social communication.
Techniques used to diagnose this disorder are fluorescence in situ hybridization (FISH) and microarrays. FISH uses fluorescent dyes to visualize sections under a microscope, but some changes are too small to see. Microarray comparative genomic hybridization (array CGH) shows changes in small amounts DNA on chromosomes.
Kabuki syndrome can be diagnosed using whole exome or whole genome sequencing. Some patients who were initially clinically diagnosed with Kabuki syndrome were actually found to have Wiedemann-Steiner syndrome.
The term "multisystem developmental disorder" has also been used to describe various developmental disorders. These include:
- Alagille syndrome, an autosomal dominant disorder with a wide range of features and manifestations. Its five most significant features are chronic cholestasis, a condition where bile cannot flow from the liver to the duodenum, occurring in 95% of cases; heart abnormalities (over 90%); butterfly vertebrae; posterior embryotoxon and a distinctive face (prominent forehead, deep-set eyes, and a pointed chin).
- Rubinstein-Taybi syndrome, a mental retardation syndrome characterized by broad thumbs, facial abnormalities, and big toes alongside mental retardation.
- Williams syndrome, a neurodevelopmental disorder characterized by a unique profile of strengths and deficits; most with the condition have mild mental retardation but have grammatical and lexical abilities above what would be expected from their IQs. They are hypersocial and empathetic, but social isolation is commonly experienced.
- Proteus syndrome, a congenital disorder causing disproportionate growth of skin, bone, and other tissues.
- Asphyxiating thoracic dysplasia, a autosomal recessive skeletal disorder with an estimated prevalence of between 1 in 100,000 and 1 in 130,000 live births.
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
Multisystem developmental disorder (MSDD) is a term used by Stanley Greenspan to describe children under age 3 who exhibit signs of impaired communication as in autism, but with strong emotional attachments atypical of autism. It is described in the DC:0-3R manual as an optional diagnosis for children under two years of age.
PDD-NOS is an old diagnostic category. It is no longer included as an option for an Autism Spectrum Disorder and is not part of the DSM-5, but is included in the ICD-10.
The diagnosis of a pervasive developmental disorder not otherwise specified is given to individuals with difficulties in the areas of social interaction, communication, and/or stereotyped behavior patterns or interests, but who do not meet the full DSM-IV criteria for autism or another PDD. This does not necessarily mean that PDD-NOS is a milder disability than the other PDDs. It only means that individuals who receive this diagnosis do not meet the diagnostic criteria of the other PDDs, but that there is still a pervasive developmental disorder that affects the individual in the areas of communication, socialization and behavior.
As for the other pervasive developmental disorders, diagnosis of PDD-NOS requires the involvement of a team of specialists. The individual needs to undergo a full diagnostic evaluation, including a thorough medical, social, adaptive, motor skills and communication history. Other parts of an assessment can be behavioral rating scales, direct behavioral observations, psychological assessment, educational assessment, communication assessment, and occupational assessment.
Description of PDD-NOS merely as a "subthreshold" category without a more specific case definition poses methodological problems for research regarding the relatively heterogeneous group of people who receive this diagnosis. However, it appears that children with PDD-NOS show fewer intellectual deficits than autistic children, and that they may come to professional attention at a later age.
Assessments for developmental coordination disorder typically require a developmental history, detailing ages at which significant developmental milestones, such as crawling and walking, occurred. Motor skills screening includes activities designed to indicate developmental coordination disorder, including balancing, physical sequencing, touch sensitivity, and variations on walking activities.
The American Psychiatric Association has four primary inclusive diagnostic criteria for determining if a child has developmental coordination disorder.
The criteria are as follows:
1. Motor Coordination will be greatly reduced, although the intelligence of the child is normal for the age.
2. The difficulties the child experiences with motor coordination or planning interfere with the child's daily life.
3. The difficulties with coordination are not due to any other medical condition
4. If the child does also experience comorbidities such as mental retardation; motor coordination is still disproportionally affected.
Screening tests which can be used to assess developmental coordination disorder include:-
- Movement Assessment Battery for Children (Movement-ABC – Movement-ABC 2)
- Peabody Developmental Motor Scales- Second Edition (PDMS-2)
- Bruininks-Oseretsky Test of Motor Proficiency (BOTMP-BOT-2)
- Motoriktest für vier- bis sechsjährige Kinder (MOT 4-6)
- Körperkoordinationtest für Kinder (KTK)
- Test of Gross Motor Development, Second Edition (TGMD-2)
- Maastrichtse Motoriek Test (MMT)
- Wechsler Adult Intelligence Scale (WAIS-IV)
- Wechsler Individual Achievement Test (WAIT-II)
- Test of Word Reading Efficiency (TOWRE-2)
- Developmental Coordination Disorder Questionnaire (DCD-Q)
- Children's Self-Perceptions of Adequacy in, and Predilection for Physical Activity (CSAPPA)
Currently there is no single gold standard assessment test.
A baseline motor assessment establishes the starting point for developmental intervention programs. Comparing children to normal rates of development may help to establish areas of significant difficulty.
However, research in the "British Journal of Special Education" has shown that knowledge is severely limited in many who should be trained to recognise and respond to various difficulties, including developmental coordination disorder, dyslexia and deficits in attention, motor control and perception (DAMP). The earlier that difficulties are noted and timely assessments occur, the quicker intervention can begin. A teacher or GP could miss a diagnosis if they are only applying a cursory knowledge.
"Teachers will not be able to recognise or accommodate the child with learning difficulties in class if their knowledge is limited. Similarly GPs will find it difficult to detect and appropriately refer children with learning difficulties."
In a sample of 19 children, a 1997 study found that 3 died before the age of 3, and 2 never learned to walk. The children had various levels of delayed development with developmental quotients from 60 to 85.
The first diagnosed case of ASD was published in 1943 by American psychiatrist Leo Kanner. There is a wide range of cases and severity to ASD so it is very hard to detect the first signs of ASD. A diagnosis of ASD can be made accurately before the child is 3 years old, but the diagnosis of ASD is not commonly confirmed until the child is somewhat older. The age of diagnosis can range from 9 months to 14 years, and the mean age is 4 years old in the USA. On average each case of ASD is tested at three different diagnostic centers before confirmed. Early diagnosis of the disorder can diminish familial stress, speed up referral to special educational programs and influence family planning.
Therapy can help developmental delays, as well as physiotherapy for the low muscle tone. Exercise and healthy eating can reduce weight gain. Treatments are available for seizures, eczema, asthma, infections, and certain bodily ailments.
Developmental coordination disorder is a lifelong neurological condition that is more common in males than in females, with a ratio of approximately four males to every female. The exact proportion of people with the disorder is unknown since the disorder can be difficult to detect due to a lack of specific laboratory tests, thus making diagnosis of the condition one of elimination of all other possible causes/diseases. Approximately 5–6% of children are affected by this condition.
Intellectual disability in children can be caused by genetic or environmental factors. The individual could have a natural brain malformation or pre or postnatal damage done to the brain caused by drowning or a traumatic brain injury, for example. Nearly 30 to 50% of individuals with intellectual disability will never know the cause of their diagnosis even after thorough investigation.
Prenatal causes of intellectual disability include:
- Congenital infections such as cytomegalovirus, toxoplasmosis, herpes, syphilis, rubella and human immunodeficiency virus
- Prolonged maternal fever in the first trimester
- Exposure to anticonvulsants or alcohol
- Untreated maternal phenylketonuria (PKU)
- Complications of prematurity, especially in extremely low-birth-weight infants
- Postnatal exposure to lead
Single-gene disorders that result in intellectual disability include:
- Fragile X syndrome
- Neurofibromatosis
- Tuberous sclerosis
- Noonan's syndrome
- Cornelia de Lange's syndrome
These single-gene disorders are usually associated with atypical physical characteristics.
About 1/4 of individuals with intellectual disability have a detectable chromosomal abnormality. Others may have small amounts of deletion or duplication of chromosomes, which may go unnoticed and therefore, undetermined.
Autism spectrum disorders tend to be highly comorbid with other disorders. Comorbidity may increase with age and may worsen the course of youth with ASDs and make intervention/treatment more difficult. Distinguishing between ASDs and other diagnoses can be challenging, because the traits of ASDs often overlap with symptoms of other disorders, and the characteristics of ASDs make traditional diagnostic procedures difficult.
The most common medical condition occurring in individuals with autism spectrum disorders is seizure disorder or epilepsy, which occurs in 11-39% of individuals with ASD. Tuberous sclerosis, a medical condition in which non-malignant tumors grow in the brain and on other vital organs, occurs in 1-4% of individuals with ASDs.
Intellectual disabilities are some of the most common comorbid disorders with ASDs. Recent estimates suggest that 40-69% of individuals with ASD have some degree of an intellectual disability, more likely to be severe for females. A number of genetic syndromes causing intellectual disability may also be comorbid with ASD, including fragile X syndrome, Down syndrome, Prader-Willi and Angelman syndromes, and Williams syndrome.
Learning disabilities are also highly comorbid in individuals with an ASD. Approximately 25-75% of individuals with an ASD also have some degree of a learning disability.
Various anxiety disorders tend to co-occur with autism spectrum disorders, with overall comorbidity rates of 7-84%. Rates of comorbid depression in individuals with an ASD range from 4–58%. The relationship between ASD and schizophrenia remains a controversial subject under continued investigation, and recent meta-analyses have examined genetic, environmental, infectious, and immune risk factors that may be shared between the two conditions.
Deficits in ASD are often linked to behavior problems, such as difficulties following directions, being cooperative, and doing things on other people's terms. Symptoms similar to those of attention deficit hyperactivity disorder (ADHD) can be part of an ASD diagnosis.
Sensory processing disorder is also comorbid with ASD, with comorbidity rates of 42–88%.
The treatments of kabuki syndrome are still being developed due to its genetic nature. The first step to treatment is diagnosis. After diagnosis, the treatment of medical conditions can often be treated by medical intervention. There are also options in psychotherapy for young children with this disorder, as well as the family of the child. Genetic counseling is available as a preventative treatment for kabuki syndrome because it can be inherited and expressed by only having one copy of the mutated gene.
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.