Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The major criterion for diagnosis is typically a confirmed surgical biopsy. Minor diagnostic criteria have been proposed for DIPNECH.
- Clinical presentation: woman, between the age of 45 and 67 with cough and/or shortness of breath for 5–10 years
- Pulmonary function: increased residual volume, increased total lung capacity, fixed obstruction, low diffusing capacity of the lung for carbon monoxide that corrects with alveolar volume
- High-resolution CT scan: diffuse pulmonary nodules 4–10 mm, greater than 20 nodules, mosaic attenuation or air trapping in greater than 50% of the lung
- Transbronchial biopsy: proliferation of pulmonary neuroendocrine cells
- Serum markers: elevated serum chromogranin A levels
Although some patients present with normal lung function, pulmonary function tests generally demonstrate fixed airway obstruction with a decreased FEV1 and reduced FEV1/FVC ratio without bronchodilator response. Air trapping is common and leads to increased residual volumes. As the disease progresses, a mixed pattern of obstruction and restriction may develop. In general the obstructive lung disease is slowly progressive with periods of stability.
Ectopic endometrial tissue reaches the pleural space of the lung or the right hemi-diaphragmatic region and erodes the visceral pleura, causing the formation of a spontaneous pneumothorax. The condition is often cyclical, due to its associations with the beginning of the menstrual cycle.
Affected persons usually present with recurrent spontaneous pneumothorax associated with the onset of the menstrual cycle. Additionally, chest/scapular pain and/or evidence of endometriosis in the abdominopelvic cavity are other manifestations.
On radiological studies, pneumothorax is visualized using conventional chest x-rays and CT scans. In 90% of the cases, the pneumothorax is located on the right side. In some cases, small nodules can be seen in the pleura using CT scans. Confirmation can be done using video assisted thoracoscopic surgery (VATS).
Treatment for the pneumothorax is with chest tube placement. As for the ectopic endometrial tissue, therapy with gonadotropin-releasing–hormone or resection of the lesions can improve symptoms.
Following thoracoabdominal trauma, most commonly a penetrating injury, laceration of the diaphragm, and spleen allows ectopic splenic tissue to reach the pleural space of the lung.
Affected persons are usually asymptomatic. However, on rare occasions, thoracic splenosis can present with chest pain and/or hemoptysis.
On radiological studies, thoracic splenic lesions are visualized using CT scans. Visualized lesions can be described as solitary or multiple nodules. The locations of the lesions are mostly in the lower left pleural space and/or splenic bed. Confirmation can be done using scintigraphy with 99mTc tagged heat-damaged red blood cells.
No treatment is required since thoracic splenosis is a benign condition.
For some types of chILD and few forms adult ILD genetic causes have been identified. These may be identified by blood tests. For a limited number of cases this is a definite advantage, as a precise molecular diagnosis can be done; frequently then there is no need for a lung biopsy. Testing is available for
Investigation is tailored towards the symptoms and signs. A proper and detailed history looking for the occupational exposures, and for signs of conditions listed above is the first and probably the most important part of the workup in patients with interstitial lung disease. Pulmonary function tests usually show a restrictive defect with decreased diffusion capacity (DLCO).
A lung biopsy is required if the clinical history and imaging are not clearly suggestive of a specific diagnosis or malignancy cannot otherwise be ruled out. In cases where a lung biopsy is indicated, a trans-bronchial biopsy is usually unhelpful, and a surgical lung biopsy is often required.
The diagnosis of RA was formerly based on detection of rheumatoid factor (RF). However, RF is also associated with other autoimmune diseases. The detection of anti-CCP is currently considered the most specific marker of RA. The diagnosis of rheumatoid lung disease is based on evaluation of pulmonary function, radiology, serology and lung biopsy. High resolution CT scans are preferred to chest X-rays due to their sensitivity and specificity.
Associated doctors to diagnosis this properly would be a Rheumatologists or Pulmonologist.
Within a physical examination doctors could find possible indications, such as hearing crackles (rales) when listening to the lungs with a stethoscope. Or, there may be decreased breath sounds, wheezing, a rubbing sound, or normal breath sounds. When listening to the heart, there may be abnormal heart sounds. Bronchoscopic, video-assisted, or open lung biopsy allows the histological characterization of pulmonary lesions, which can distinguish rheumatoid lung disease from other interstitial lung diseases.
The following tests may also show signs of rheumatoid lung disease:
- Chest x-ray may show:
- pleural effusion
- lower zone predominant reticular or reticulonodular pattern
- volume loss in advanced disease
- skeletal changes, e.g. erosion of clavicles, glenohumeral erosive arthropathy, superior rib notching
- Chest CT or HRCT features include:
- pleural thickening or effusion
- interstitial fibrosis
- bronchiectasis
- bronchiolitis obliterans
- large rheumatoid nodules
- single or multiple
- tend to be based peripherally
- may cavitate (necrobiotic lung nodules)
- cavitation of a peripheral nodule can lead to pneumothorax or haemopneumothorax.
- follicular bronchiolitis
- small centrilobular nodules or tree-in-bud
- rare
- Caplan syndrome
- Echocardiogram (may show pulmonary hypertension)
- Lung biopsy (bronchoscopic, video-assisted, or open), which may show pulmonary lesions
- Lung function tests
- Needle inserted into the fluid around the lung (thoracentesis)
- Blood tests for rheumatoid arthritis
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
The chest x-ray is distinctive with features that appear similar to an extensive pneumonia, with both lungs showing widespread white patches. The white patches may seem to migrate from one area of the lung to another as the disease persists or progresses. Computed tomography (CT) may be used to confirm the diagnosis. Often the findings are typical enough to allow the doctor to make a diagnosis without ordering additional tests. To confirm the diagnosis, a doctor may perform a lung biopsy using a bronchoscope. Many times, a larger specimen is needed and must be removed surgically.
Plain chest radiography shows normal lung volumes, with characteristic patchy unilateral or bilateral consolidation. Small nodular opacities occur in up to 50% of patients and large nodules in 15%. On high resolution computed tomography, airspace consolidation with air bronchograms is present in more than 90% of patients, often with a lower zone predominance A subpleural or peribronchiolar distribution is noted in up to 50% of patients. Ground glass appearance or hazy opacities associated with the consolidation are detected in most patients.
Pulmonary physiology is restrictive with a reduced diffusion capacity of the lung for carbon monoxide (DCO). Airflow limitation is uncommon; gas exchange is usually abnormal and mild hypoxemia is common. Bronchoscopy with bronchoalveolar lavage reveals up to 40% lymphocytes, along with more subtle increases in neutrophils and eosinophils. In patients with typical clinical and radiographic features, a transbronchial biopsy that shows the pathologic pattern of organizing pneumonia and lacks features of an alternative diagnosis is adequate to make a tentative diagnosis and start therapy. On surgical lung biopsy, the histopathologic pattern is organizing pneumonia with preserved lung architecture; this pattern is not exclusive to BOOP and must be interpreted in the clinical context.
Histologically, cryptogenic organizing pneumonia is characterized by the presence of polypoid plugs of loose organizing connective tissue (Masson bodies) within alveolar ducts, alveoli, and bronchioles.
Rare cases of BOOP have induced with lobar cicatricial atelectasis.
The diagnosis of SCLC, TC and AC can be made by light microscopy without the need for special tests in most cases, but for LCNEC it is required to demonstrate NE differentiation by immunohistochemistry or electron microscopy.
In the differential diagnosis (finding the correct diagnosis between diseases that have overlapping features) of some obstructive lung diseases, DPB is often considered. A number of DPB symptoms resemble those found with other obstructive lung diseases such as asthma, chronic bronchitis, and emphysema. Wheezing, coughing with sputum production, and shortness of breath are common symptoms in such diseases, and obstructive respiratory functional impairment is found on pulmonary function testing. Cystic fibrosis, like DPB, causes severe lung inflammation, excess mucus production, and infection; but DPB does not cause disturbances of the pancreas nor the electrolytes, as does CF, so the two diseases are different and probably unrelated. DPB is distinguished by the presence of lesions that appear on X-rays as nodules in the bronchioles of both lungs; inflammation in all tissue layers of the respiratory bronchioles; and its higher prevalence among individuals with East Asian lineage.
DPB and bronchiolitis obliterans are two forms of primary bronchiolitis. Specific overlapping features of both diseases include strong cough with large amounts of often pus-filled sputum; nodules viewable on lung X-rays in the lower bronchi and bronchiolar area; and chronic sinusitis. In DPB, the nodules are more restricted to the respiratory bronchioles, while in OB they are often found in the membranous bronchioles (the initial non-cartilaginous section of the bronchiole, that divides from the tertiary bronchus) up to the secondary bronchus. OB is a bronchiolar disease with worldwide prevalence, while DPB has more localized prevalence, predominantly in Japan. Prior to clinical recognition of DPB in recent years, it was often misdiagnosed as bronchiectasia, COPD, IPF, phthisis miliaris, sarcoidosis or alveolar cell carcinoma.
Genetic changes are very high in SCLC and LCNEC, but usually low for TC, intermediate for AC.
The diagnosis of DPB requires analysis of the lungs and bronchiolar tissues, which can require a lung biopsy, or the more preferred high resolution computed tomography (HRCT) scan of the lungs. The diagnostic criteria include severe inflammation in all layers of the respiratory bronchioles and lung tissue lesions that appear as nodules within the terminal and respiratory bronchioles in both lungs. The nodules in DPB appear as opaque lumps when viewed on X-rays of the lung, and can cause airway obstruction, which is evaluated by a pulmonary function test, or PFT. Lung X-rays can also reveal dilation of the bronchiolar passages, another sign of DBP. HRCT scans often show blockages of some bronchiolar passages with mucus, which is referred to as the "tree-in-bud" pattern. Hypoxemia, another sign of breathing difficulty, is revealed by measuring the oxygen and carbon dioxide content of the blood, using a blood test called arterial blood gas. Other findings observed with DPB include the proliferation of lymphocytes (white blood cells that fight infection), neutrophils, and foamy histiocytes (tissue macrophages) in the lung lining. Bacteria such as "H. influenzae" and "P. aeruginosa" are also detectable, with the latter becoming more prominent as the disease progresses. The white blood, bacterial and other cellular content of the blood can be measured by taking a complete blood count (CBC). Elevated levels of IgG and IgA (classes of immunoglobulins) may be seen, as well as the presence of rheumatoid factor (an indicator of autoimmunity). Hemagglutination, a clumping of red blood cells in response to the presence of antibodies in the blood, may also occur. Neutrophils, beta-defensins, leukotrienes, and chemokines can also be detected in bronchoalveolar lavage fluid injected then removed from the bronchiolar airways of individuals with DPB, for evaluation.
There are three basic criteria for the diagnosis of CWP:
1. Chest radiography consistent with CWP
2. An exposure history to coal dust (typically underground coal mining) of sufficient amount and latency
3. Exclusion of alternative diagnoses (mimics of CWP)
Symptoms and pulmonary function testing relate to the degree of respiratory impairment but are not part of the diagnostic criteria. As noted above, the chest X-ray appearance for CWP can be virtually indistinguishable from silicosis. Chest CT, particularly high-resolution scanning (HRCT), are more sensitive than plain X-ray for detecting the small round opacities.
Alveolar disease is visible on chest radiography as small, ill-defined nodules of homogeneous density centered on the acini or bronchioles. The nodules coalesce early in the course of disease, such that the nodules may only be seen as soft fluffy edges in the periphery.
When the nodules are centered on the hilar regions, the chest x-ray may develop what is called the "butterfly," or "batwing" appearance. The nodules may also have a segmental or lobar distribution. Air alveolograms and air bronchograms can also be seen.
These findings appear soon after the onset of symptoms and change rapidly thereafter.
A segmental or lobar pattern may be apparent after aspiration pneumonia, atelectasis, lung contusion, localized pulmonary edema, obstructive pneumonia, pneumonia, pulmonary embolism with infarction, or tuberculosis.
Positive indications on patient assessment:
- Shortness of breath
- Chest X-ray may show a characteristic patchy, subpleural, bibasilar interstitial infiltrates or small cystic radiolucencies called honeycombing.
Pneumoconiosis in combination with multiple pulmonary rheumatoid nodules in rheumatoid arthritis patients is known as Caplan's syndrome.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
Exogenous lipid pneumonia is rare in the general population, but occupational accidents may not be uncommon in fire performers. Diagnosis is usually made on the basis of history of exposure to hydrocarbon fuels, symptoms, and radiological findings. The radiological findings are nonspecific, and the disease presents with variable patterns and distribution. For this reason, lipoid pneumonia may mimic many other diseases, and the diagnosis is often delayed.
Chest X-rays taken shortly after the accident may or may not be abnormal, but typically over time show infiltrates in the lower lobes of the lungs. High-resolution CT will frequently demonstrate abnormalities, including opacities, pleural effusion, consolidation, or pulmonary nodules. Histopathology of lung biopsy or bronchoalveolar lavage may indicate lipid-laden macrophages. Laboratory results may show highly elevated inflammatory markers.
The prognosis of patients with FA as a whole is considered to be better than that of most other forms of non-small cell carcinoma, including biphasic pulmonary blastoma.
The nodules may pre-date the appearance of rheumatoid arthritis by several years. Otherwise prognosis is as for RA; lung disease may remit spontaneously, but pulmonary fibrosis may also progress.
X-rays can be used to examine the lung tissue, however it can not be used to positively diagnose geotrichosis. X-rays may show cavitation that is located the walls of the lungs tissues. The lung tissue resemble the early signs of tuberculosis. The results of an x-ray examination of pulmonary geotrichosis presents smooth, dense patchy infiltrations and some cavities. Bronchial geotrichosis shows peribronchial thickening with fine mottling may be present on middle or basilar pulmonary fields. Bronchial geotrichosis usually present itself as non-specific diffuse peribronchical infiltration.
Lung symptoms in a patient who is taking a medicinal drug that can cause pulmonary toxicity should not automatically lead to a diagnosis of "pulmonary toxicity due to the medicinal drug", because some patients can have another (i.e., simultaneous) lung disease, e.g. an infection of the lungs "not" related to the medicinal drugs the patient is taking. But if the patient is taking such a medicinal drug, this should not be overlooked. Diagnostic care should be executed. The correct diagnosis is an exclusion diagnosis and can require some tests.
As with other chest injuries such as pulmonary contusion, hemothorax, and pneumothorax, pulmonary laceration can often be treated with just supplemental oxygen, ventilation, and drainage of fluids from the chest cavity. A thoracostomy tube can be used to remove blood and air from the chest cavity. About 5% of cases require surgery, called thoracotomy. Thoracotomy is especially likely to be needed if a lung fails to re-expand; if pneumothorax, bleeding, or coughing up blood persist; or in order to remove clotted blood from a hemothorax. Surgical treatment includes suturing, stapling, oversewing, and wedging out of the laceration. Occasionally, surgeons must perform a lobectomy, in which a lobe of the lung is removed, or a pneumonectomy, in which an entire lung is removed.
OPA has been found in most countries where sheep are farmed, with the exception of Australia and New Zealand. OPA has been eradicated in Iceland.
No breed or sex of sheep appears to be predisposed to OPA. Most affected sheep show signs at 2 to 4 years of age.
OPA is not a notifiable disease, and therefore it is difficult to assess its prevalence.