Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Washing the infected area with an antiseptic solution is part of the treatment for mud fever. However, washing a horse's legs repeatedly can remove the natural oils in the skin and may allow the condition to become established. The legs should be dried thoroughly after washing with antibacterial shampoo using paper towels,
The horse should be kept in a clean, dry indoor barn stall with wood shavings for bedding to prevent a moist environment around the legs.
Diagnosis is most commonly done with the identification of bacteria in the lesions by a microscope observation. Ticks, biting flies, and contact with other infected animals also causes the spread of rainscald. A scab will be taken from the affected animal and stained so that the bacteria are visible under a microscope inspection. A positive diagnosis of rainscald can be confirmed if filamentous bacteria are observed with as well as chains of small, spherical bacteria. If a diagnosis cannot be confirmed with a microscope, blood agar cultures can be grown to confirm the presence of "D. congolensis". The resulting colonies have filaments and are yellow in colour.
Rainscald normally heals on its own, however as the condition can spread to involve large areas, prompt treatment is recommended. Although some cases can be severe, most rain scald is minor and can be easily and cheaply treated at home naturally.
First groom the affected parts carefully, to remove any loose hair. Be extremely gentle, the area is very sore itchy and horses will very quickly get fidgety. Next shampoo the area, use warm water and a soft cloth or brush, and massage the lather through the coat as much as the horse will tolerate. It is best to use Neem shampoo here, as this will treat as well as clean, but any mild shampoo is fine. Remove as much water as possible and dry the horse off, either use a hair drier or let him/her stand in the sun until completely dry. It is important not to let the horse roll! The rain scald bacteria may be picked up from the soil.
When the horse is completely dry, gently brush off any more loose hair. Next apply a salve or cream containing a high percentage of neem oil, or even pure neem oil, to liberally coat the affected area. Rub it in using fingertips, massage the area as much as the horse will tolerate. This will be very greasy. Smooth the hair back down and apply a rug to keep the horse dry, this prevents the neem being washed off as well as protecting from more dampness issues. Turn the horse out as normal.
Check it every day, and reapply the neem salve/cream if it seems to have dried away. The area should remain greasy with neem. Every 2–3 days or so, go through and scrape/pick off as much of the scabs as possible without upsetting the horse or making it bleed, then reapply the neem. Typically there will be improvement in a few days, and in a week there'll be some sign of new hair growing back. More severe rain scald may take longer.
Once all the scabs are gone and there is new hair fuzz growing in all over, use neem shampoo to clean the area of greasy residue, and dry well. Keep the horse covered for some time after rain scald has been treated, particularly in wet weather. Do not allow the skin to remain damp. It is advisable to shampoo the horse after riding or exercising, to remove sweat, which may encourage rain scald conditions, and make sure the coat is completely dry afterwards.
This treatment works in many ways. First, shampooing cleans the area of any contaminants, remove a lot of loose hair and scabs, and the rubbing stimulates the circulation. The neem is an antifungal agent, and works to eliminate the bacteria that cause the infection. It soothes the irritation in the area, and its greasiness provides the ideal environment for the raw skin to heal and grow new hair. It also helps to soften and lift the scabs. The new hair cannot grow in until those scabs are removed from the surface, but they are very painful to pick and remove, and most horses are intolerant of this procedure. After the neem has soaked into these scabs they will come away much more freely, and soon new hair will grow through.
In conventional treatment, scabs are softened with benzoyl peroxide and chlorhexidine and removed in order to speed the healing process. In severe or chronic cases, penicillin and streptomycin are injected into the horse to kill the bacteria.
Typically the disease is not life-threatening, nor does it impact the welfare of the horse, so treatments are more for the owner's sake of mind and cosmetic appeal of the animal.
This bacterium is present in soil and is transmitted to horses through open wounds, abrasions or mucous membranes.
It is important to reduce the amount of environmental contamination to prevent the spread of insects or fomites. Owners should regularly apply insect repellent and routinely check their horses for open wounds to prevent chance of infection. A regular manure management program is recommended, including removal of soiled feed and bedding, as the bacteria can survive in hay and shavings for up to two months. Since the disease lives in the ground and is spread by flies, pest control is a good defense but not a guarantee. Horses being introduced to new environments should be quarantined and any infected horses should be isolated to prevent spread of the bacteria. There is currently no vaccination for Pigeon Fever.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
A definitive diagnosis is made by culturing the organism from any clinical sample, because the organism is never part of the normal human flora.
A definite history of contact with soil may not be elicited, as melioidosis can be dormant for many years before manifesting. Attention should be paid to a history of travel to endemic areas in returned travellers. Some authors recommend considering possibility of melioidosis in every febrile patient with a history of traveling to and/or staying at endemic areas.
A complete screen (blood culture, sputum culture, urine culture, throat swab, and culture of any aspirated pus) should be performed on all patients with suspected melioidosis (culture on blood agar as well as Ashdown's medium). A definitive diagnosis is made by growing "B. pseudomallei" from any site. A throat swab is not sensitive, but is 100% specific if positive, and compares favourably with sputum culture. The sensitivity of urine culture is increased if a centrifuged specimen is cultured, and any bacterial growth should be reported (not just growth above 10 organisms/ml which is the usual cutoff). Very occasionally, bone marrow culture may be positive in patients who have negative blood cultures for "B. pseudomallei", but these are not usually recommended. A common error made by clinicians unfamiliar with melioidosis is to send a specimen from only the affected site (which is the usual procedure for most other infections) instead of sending a full screen.
Ashdown's medium, a selective medium containing gentamicin, may be required for cultures taken from nonsterile sites. "Burkholderia cepacia" medium may be a useful alternative selective medium in nonendemic areas, where Ashdown's is not available. A new medium derived from Ashdown, known as Francis medium, may help differentiate "B. pseudomallei" from "B. cepacia" and may help in the early diagnosis of melioidosis, but has not yet been extensively clinically validated.
Many commercial kits for identifying bacteria may misidentify "B. pseudomallei" ("see" "Burkholderia pseudomallei" for a more detailed discussion of this topic).
A serological test for melioidosis (indirect haemagglutination) is available, but not commercially in most countries. A high background titre may reduce the positive predictive value of serological tests in endemic countries. A specific direct immunofluorescent test and latex agglutination, based on monoclonal antibodies, are used widely in Thailand, but are not available elsewhere. Cross-reactivity with "B. thailandensis" is almost complete. A commercial ELISA kit for melioidosis appears to perform well. but no ELISA test has yet been clinically validated as a diagnostic tool.
It is not possible to make the diagnosis on imaging studies alone (X-rays and scans), but imaging is routinely performed to assess the full extent of disease. Imaging of the abdomen using CT scans or ultrasound is recommended routinely, as abscesses may not be clinically apparent and may coexist with disease elsewhere. Australian authorities suggest imaging of the prostate specifically due to the high incidence of prostatic abscesses in northern Australian patients. A chest X-ray is also considered routine, with other investigations as clinically indicated. The presence of honeycomb abscesses in the liver is considered characteristic, but is not diagnostic.
The differential diagnosis is extensive; melioidosis may mimic many other infections, including tuberculosis.
This condition is diagnosed by detecting the bacteria in skin, blood, joint fluid, or lymph nodes. Blood antibody tests may also be used. To get a proper diagnosis for rat-bite fever, different tests are run depending on the symptoms being experienced.
To diagnosis streptobacillary rat-bite fever, blood or joint fluid is extracted and the organisms living in it are cultured. Diagnosis for spirillary rat bite fever is by direct visualization or culture of spirilla from blood smears or tissue from lesions or lymph nodes. Treatment with antibiotics is the same for both types of infection. The condition responds to penicillin, and where allergies to it occur, erythromycin or tetracyclines are used.
"Warm water immersion foot" is a skin condition of the feet that results after exposure to warm, wet conditions for 48 hours or more and is characterized by maceration ("pruning"), blanching, and wrinkling of the soles, padding of toes (especially the big toe) and padding of the sides of the feet.
Foot maceration occur whenever exposed for prolong periods to moist conditions. Large watery blisters appear which are painful when they open and begin to peel away from the foot itself. The heels, sides and bony prominences are left with large areas of extremely sensitive, red tissue, exposed and prone to infection. As the condition worsens, more blisters develop due to prolonged dampness which eventually covers the entire heel and/or other large, padded sections of the foot, especially the undersides as well as toes. Each layer in turn peels away resulting in deep, extremely tender, red ulcerations.
Healing occurs only when the feet are cleansed, dried and exposed to air for weeks. Scarring is permanent with dry, thin skin that appears red for up to a year or more. The padding of the feet returns but healing can be painful as the nerves repair with characteristics of diabetic neuropathy. Antibiotics and/or antifungal are sometimes prescribed.
Foot immersion is a common problem with homeless individuals wearing one pair of socks and shoes for extensive periods of time, especially wet shoes and sneakers from rain and snow. The condition is exacerbated by excessive dampness of the feet for prolonged periods of time. Fungus and bacterial infections prosper in the warm, dark, wet conditions and are characterized by a sickly odor that is distinct to foot immersion.
Person-to-person transmission is exceedingly unusual; and patients with melioidosis should not be considered contagious. Lab workers should handle "B. pseudomallei" under BSL-3 isolation conditions, as laboratory-acquired melioidosis has been described.
In endemic areas, people (rice-paddy farmers in particular) are warned to avoid contact with soil, mud, and surface water where possible. Case clusters have been described following flooding and cyclones and probably relate to exposure. Other case clusters have related to contamination of drinking water supplies. Populations at risk include patients with diabetes mellitus, chronic renal failure, chronic lung disease, or an immune deficiency of any kind. The effectiveness of measures to reduce exposure to the causative organism have not been established. A vaccine is not yet available.
While obviously preventable by staying away from rodents, otherwise hands and face should be washed after contact and any scratches both cleaned and antiseptics applied. The effect of chemoprophylaxis following rodent bites or scratches on the disease is unknown. No vaccines are available for these diseases.
Improved conditions to minimize rodent contact with humans are the best preventive measures. Animal handlers, laboratory workers, and sanitation and sewer workers must take special precautions against exposure. Wild rodents, dead or alive, should not be touched and pets must not be allowed to ingest rodents.
Those living in the inner cities where overcrowding and poor sanitation cause rodent problems are at risk from the disease. Half of all cases reported are children under 12 living in these conditions.
Immersion foot syndromes are a class of foot injury caused by water absorption in the outer layer of skin. There are different subclass names for this condition based on the temperature of the water to which the foot is exposed. These include trench foot, tropical immersion foot, and warm water immersion foot. In one 3-day military study, it was found that submersion in water allowing for a higher skin temperature resulted in worse skin maceration and pain.
Prophylaxis and treatment with an anti-inflammatory agent may stop progression of the reaction. Oral aspirin or ibuprofen every four hours for a day or 60 mg of prednisone orally or intravenously has been used as an adjunctive treatment . However, steroids are generally of no benefit. Patients must be closely monitored for the potential complications (collapse and shock) and may require IV fluids to maintain adequate blood pressure. If available, meptazinol, an opioid analgesic of the mixed agonist/antagonist type, should be administered to reduce the severity of the reaction. Anti TNF-a may also be effective.
"N. fowleri" can be grown in several kinds of liquid axenic media or on non-nutrient agar plates coated with bacteria. "Escherichia coli" can be used to overlay the non-nutrient agar plate and a drop of cerebrospinal fluid sediment is added to it. Plates are then incubated at 37 °C and checked daily for clearing of the agar in thin tracks, which indicate the trophozoites have fed on the bacteria. Detection in water is performed by centrifuging a water sample with "E. coli" added, then applying the pellet to a non-nutrient agar plate. After several days, the plate is microscopically inspected and "Naegleria" cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods.
Confirmation of "Naegleria" presence can be done by a so-called flagellation test, where the organism is exposed to a hypotonic environment (distilled water). "Naegleria", in contrast to other amoebae, differentiates within two hours into the flagellate state.
Pathogenicity can be further confirmed by exposure to high temperature (42 °C): "Naegleria fowleri" is able to grow at this temperature, but the nonpathogenic "Naegleria gruberi" is not.
Lipoproteins released from treatment of "Treponema pallidum" infections are believed to induce the Jarisch-Herxheimer reaction. The Herxheimer reaction has shown an increase in inflammatory cytokines during the period of exacerbation, including tumor necrosis factor alpha, interleukin-6 and interleukin-8.
Ticks should be removed promptly and carefully with tweezers and by applying gentle, steady traction. The tick's body should not be crushed when it is removed and the tweezers should be placed as close to the skin as possible to avoid leaving tick mouthparts in the skin; mouthparts left in the skin can allow secondary infections. Ticks should not be removed with bare hands. Hands should be protected by gloves and/or tissues and thoroughly washed with soap and water after the removal process.
A match or flame should not be used to remove a tick. This method, once thought safe, can cause the tick to regurgitate, expelling any disease it may be carrying into the bite wound.
The diagnosis is normally made based upon the clinical appearance and history. Tissue biopsy is not usually indicated unless there are areas of ulceration or localized erythroplakia (red patches). The differential diagnosis is with other causes of white lesions (see leukoplakia for a more complete discussion). Specific conditions which can produce a similar appearance include Darier's disease, discoid lupus erythematosus, oral candidiasis, and oral lichen planus.
If a biopsy is taken, the histopathologic appearance is one of hyperkeratosis and acanthosis. There may be squamous metaplasia of excretory ducts, which results in the visible papules if the ducts become hyperplastic. Neutrophils may fill some ducts. It is characterized as a "fissured" or "dried mud" appearance from excess keratin production by cells. Dysplasia is rarely seen.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
Biopsies or cultures of a person's tick wound (eschar) are used to diagnose ATBF. However, this requires special culture media and can only be done by a laboratory with biohazard protection. There are more specialized laboratory tests available that use quantitative polymerase chain reactions (qPCR), but can only be done by laboratories with special equipment. Immunofluorescence assays can also be used, but are hard to interpret because of cross-reactions with other rickettsiae bacteria.
A combination of clinical signs, symptoms, and laboratory tests can confirm the likelihood of having CTF. Some tests include complement fixation to Colorado tick virus, immunofluorescence for Colorado tick fever, and some other common laboratory findings suggestive of CTF, including leucopenia, thrombocytopenia, and mildly elevated liver enzyme levels.
Detection of viral antibodies on red blood cells is possible.
A sizable industry has developed in Japan around services and products that help people deal with hay fever, including protective wear such as coats with smooth surfaces, masks, and glasses; medication and remedies; household goods such as air-conditioner filters and fine window screens; and even "hay fever relief vacations" to low-pollen areas such as Okinawa and Hokkaido. Some people in Japan use medical laser therapy to desensitize the parts of their nose that are sensitive to pollen.
Diagnosis of ATBF is mostly based on symptoms, as many laboratory tests are not specific for ATBF. Common laboratory test signs of ATBF are a low white blood cell count (lymphopenia) and low platelet count (thrombocytopenia), a high C-reactive protein, and mildly high liver function tests.
When the appearance is caused by heat, the lesion is usually completely reversible within a few weeks if the smoking habit is stopped. This is the case even if the condition has been present for decades. Without stopping smoking, spontaneous remission of the lesion is unlikely. If the lesion persists despite stopping smoking, this is usually then considered to be a true leukoplakia rather than a reactionary keratotis, and may trigger the decision to carry out a biopsy to confirm the diagnosis. Since this condition almost always develops in the setting of long term heavy smoking, it usually indicates the need for regular observation for cancers associated with smoking, e.g. lung cancer.