Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Macropsia is generally diagnosed once a patient complains of the characteristic symptoms, such as disproportionally large objects in their visual field. The Amsler Grid test can be used to diagnose macropsia, along with other visual maladies depending on the subjective disturbance reported by the patient after looking at the Amsler Grid. Outward bulging of the lines on an Amsler Grid is consistent with patients experiencing macropsisa. The New Aniseikonia Test (NAT) can quantify the degree of macropsia or micropsia independently in the vertical and horizontal meridians. The test consists of red and green semicircles on a black background with a white round fixation target. The size of the red semicircle is held constant while the green semicircle is varied in size in 1% increments. The patient wears a pair of red/green goggles so that one eye is tested at a time, and the patient attempts to determine when the semicircles are the same size. This is termed the reversal threshold and the size difference between the semicircles is reported as the degree of aniseikonia. A positive value indicates that the object was perceived bigger and thus corresponds to macropsia, and conversely a negative value indicates micropsia. The Aniseikonia Inspector contains an aniseikonia test based on the same principles as the NAT, but the test is run on a computer screen, it is based on a forced choice method, and it can measure the size difference as a function of the size of the objects. The functionality of being able to measure the size difference as function of the size (i.e. field dependent testing) is especially important when the macropsia (or micropsia) has a retinal origin.
Palinopsia necessitates a full ophthalmologic and neurologic history and physical exam. There are no clear guidelines on the work-up for illusory palinopsia, but it is not unreasonable to order automated visual field testing and neuroimaging since migraine aura can sometimes mimic seizures or cortical lesions. However, in a young patient without risk factors or other worrisome symptoms or signs (vasculopathy, history of cancer, etc.), neuroimaging for illusory palinopsia is low-yield but may grant the patient peace of mind.
The physical exam and work-up are usually non-contributory in illusory palinopsia. Diagnosing the etiology of illusory palinopsia is often based on the clinical history. Palinopsia is attributed to a prescription drug if symptoms begin after drug initiation or dose increase. Palinopsia is attributed to head trauma if symptoms begin shortly after the incident. Continuous illusory palinopsia in a migraineur is usually from persistent visual aura. HPPD can occur any time after hallucinogen ingestion and is a diagnosis of exclusion in patients with previous hallucinogen use. Migraines and HPPD are probably the most common causes of palinopsia. Idiopathic palinopsia may be analogous to the cerebral state in persistent visual aura with non-migraine headache or persistent visual aura without headache.
Due to the subjective nature of the symptoms and the lack of organic findings, clinicians may be dismissive of illusory palinopsia, sometimes causing the patient distress. There is considerable evidence in the literature confirming the symptom legitimacy, so validating the patient’s symptoms can help ease anxiety. Unidirectional visual trails or illusory symptoms confined to part of a visual field suggest cortical pathology and necessitate further work-up.
The most common way to treat forms of aniseikonia, including macropsia, is through the use of auxiliary optics to correct for the magnification properties of the eyes. This method includes changing the shape of spectacle lenses, changing the vertex distances with contact lenses, creating a weak telescope system with contact lenses and spectacles, and changing the power of one of the spectacle lenses. Computer software, such as the Aniseikonia Inspector, has been developed to determine the prescription needed to correct for a certain degree of aniseikonia. The problem with correction through optical means is that the optics do not vary with field angle and thus cannot compensate for non-uniform macropsia. Patients have reported significantly improved visual comfort associated with a correction of 5-10% of the aniseikonia.
With regard to drug-induced or virus-induced macropsia, once the underlying problem, either drug abuse or viral infection, is treated, the induced macropsia ceases.
Research needs to be performed on the efficacy of the various pharmaceuticals for treating illusory palinopsia. It is unclear if the symptoms' natural history and treatment are influenced by the cause. It is also not clear if there is treatment efficacy overlap for illusory palinopsia and the other co-existing diffuse persistent illusory phenomenon such as visual snow, oscillopsia, dysmetropsia, and halos.
Future advancements in fMRI could potentially further our understanding of hallucinatory palinopsia and visual memory. Increased accuracy in fMRI might also allow for the observation of subtle metabolic or perfusional changes in illusory palinopsia, without the use of ionizing radiation present in CT scans and radioactive isotopes. Studying the psychophysics of light and motion perception could advance our understanding of illusory palinopsia, and vice versa. For example, incorporating patients with visual trailing into motion perception studies could advance our understanding of the mechanisms of visual stability and motion suppression during eye movements (e.g. saccadic suppression).
Palinopsia necessitates a full ophthalmologic and neurologic history and physical exam. Hallucinatory palinopsia warrants automated visual field testing and neuroimaging since the majority of hallucinatory palinopsia is caused by posterior cortical lesions and seizures. It is generally easy to diagnose the underlying cause of hallucinatory palinopsia. The medical history typically includes concerning symptoms, and neuroimaging usually reveals cortical lesions. In patients with hallucinatory palinopsia and unremarkable neuroimaging, blood tests or clinical history often hints at the cause. The practitioner should be considering visual seizures in these cases.
Amblyopia is diagnosed by identifying low visual acuity in one or both eyes, out of proportion to the structural abnormality of the eye and excluding other visual disorders as causes for the lowered visual acuity. It can be defined as an interocular difference of two lines or more in acuity (e.g. on Snellen chart) when the eye optics is maximally corrected. In young children, visual acuity is difficult to measure and can be estimated by observing the reactions of the patient reacts when one eye is covered, including observing the patient's ability to follow objects with one eye.
Stereotests like the Lang stereotest are not reliable exclusion tests for amblyopia. A person who passes the Lang stereotest test is unlikely to have strabismic amblyopia, but could nonetheless have refractive or deprivational amblyopia. It has been suggested that binocular retinal birefringence scanning may be able to identify, already in very young children, amblyopia that is associated with strabismus, microstrabismus, or reduced fixation accuracy. Diagnosis and treatment of amblyopia as early as possible is necessary to keep the vision loss to a minimum.
Screening for amblyopia is recommended in all people between three and five years of age.
There is limited data on treating the visual disturbances associated with HPPD, persistent visual aura, or post-head trauma visual disturbances, and pharmaceutical treatment is empirically-based. It is not clear if the etiology or type of illusory symptom influences treatment efficacy. Since the symptoms are usually benign, treatment is based on the patient’s zeal and willingness to try many different drugs. There are cases which report successful treatment with clonidine, clonazepam, lamotrigine, nimodipine, topiramate, verapamil, divalproex sodium, gabapentin, furosemide, and acetazolamide, as these drugs have mechanisms that decrease neuronal excitability. However, other patients report treatment failure from the same drugs. Based on the available evidence and side-effect profile, clonidine might be an attractive treatment option. Many patients report improvement from sunglasses. FL-41 tinted lenses may provide additional relief, as they have shown some efficacy in providing relief to visually-sensitive migraineurs.
Since this condition is usually coupled with other neurological disorders or deficits, there is no known cure for cerebral polyopia. However, measures can be taken to reduce the effects of associated disorders, which have proven to reduce the effects of polyopia. In a case of occipital lobe epilepsy, the patient experienced polyopia. Following administration of valproate sodium to reduce headaches, the patient’s polyopia was reduced to palinopsia. Further, after administering the anticonvulsant drug Gabapentin in addition to valproate sodium, the effects of palinopsia were decreased, as visual perseveration is suppressed by this anticonvulsant drug. Thus, in cases of epilepsy, anticonvulsant drugs may prove to reduce the effects of polyopia and palinopsia, a topic of which should be further studied.
In other cases of polyopia, it is necessary to determine all other present visual disturbances before attempting treatment. Neurological imaging can be performed to determine if there are present occipital or temporal lobe infarctions that may be causing the polyopia. CT scans are relatively insensitive to the presence of cerebral lesions, so other neurological imaging such as PET and MRI may be performed. The presence of seizures and epilepsy may also be assessed through EEG. In addition, motor visual function should be assessed through examination of pupillary reactions, ocular motility, optokinetic nystagmus, slit-lamp examination, visual field examination, visual acuity, stereo vision, bimicroscopic examination, and funduscopic examination. Once the performance of such functions have been assessed, a plan for treatment can follow accordingly. Further research should be conducted to determine if the treatment of associated neurological disturbances can reduce the effects of polyopia.
Diagnosing CVI is difficult. A diagnosis is usually made when visual performance is poor but it is not possible to explain this from an eye examination. Before CVI was widely known among professionals, some would conclude that the patient was faking their problems or had for some reason engaged in self-deception. However, there are now testing techniques that do not depend on the patient's words and actions, such as fMRI scanning, or the use of electrodes to detect responses to stimuli in both the retina and the brain. These can be used to verify that the problem is indeed due to a malfunction of the visual cortex and/or the posterior visual pathway.
During an eye examination, the presence of suppression and the size and location of the suppression scotoma may be the Worth 4 dot test (a subjective test that is considered to be the most precise suppression test), or with other subjective tests such as the Bagolini striated lens test, or with objective tests such as the 4 prism base out test.
The cross-cover test, or alternating cover test is usually employed to detect heterophoria. One eye is covered, and then the cover is moved immediately over to the other eye. With heterophoria, when the cover is moved to the other eye, the eye that has just been uncovered can be seen to move from a deviated point. The difference between heterotropia and heterophoria can be easily understood as follows. With heterotropia, a correcting movement of the eye can be detected already by the simple cover test; with heterophoria, such correcting movement only takes place in the cross-cover test. People with heterophoria are able to create and maintain binocular fusion through vergence, and the cross-cover test purposely breaks this fusion, making the latent misaligment visible.
Whereas the cross-cover test allows a qualitative assessment to be done, a quantitative assessment of latent eye position disorders can be done using the Lancaster red-green test.
Palinopsia (Greek: "palin" for "again" and "opsia" for "seeing") is the persistent recurrence of a visual image after the stimulus has been removed. Palinopsia is not a diagnosis, it is a diverse group of pathological visual symptoms with a wide variety of causes. Visual perseveration is synonymous with palinopsia.
In 2014, Gersztenkorn and Lee comprehensively reviewed all cases of palinopsia in the literature and subdivided it into two clinically relevant groups: illusory palinopsia and hallucinatory palinopsia. Hallucinatory palinopsia, usually due to seizures or posterior cortical lesions, describes afterimages that are formed, long-lasting, and high resolution. Illusory palinopsia, usually due to migraines, head trauma, prescription drugs, or hallucinogen persisting perception disorder (HPPD), describes afterimages that are affected by ambient light and motion and are unformed, indistinct, or low resolution.
Between 2 and 5% of the population in western countries have amblyopia. In the U.K., 90% of visual health appointments in the child are concerning amblyopia.
Depending on the chosen criterion for diagnosis, between 1 and 4% of the children have amblyopia.
The appropriate treatment for binocular diplopia will depend upon the cause of the condition producing the symptoms. Efforts must first be made to identify and treat the underlying cause of the problem. Treatment options include eye exercises, wearing an eye patch on alternative eyes, prism correction, and in more extreme situations, surgery or botulinum toxin.
If diplopia turns out to be intractable, it can be managed as last resort by obscuring part of the patient's field of view. This approach is outlined in the article on diplopia occurring in association with a condition called "horror fusionis".
Diplopia has a diverse range of ophthalmologic, infectious, autoimmune, neurological, and neoplastic causes.
Palinopsia from cerebrovascular accidents generally resolves spontaneously, and treatment should be focused on the vasculopathic risk factors. Palinopsia from neoplasms, AVMs, or abscesses require treatment of the underlying condition, which usually also resolves the palinopsia. Palinopsia due to seizures generally resolves after correcting the primary disturbance and/or treating the seizures. In persistent hallucinatory palinopsia, a trial of an anti-epileptic drug can be attempted. Anti-epileptics reduce cortical excitability and could potentially treat palinopsia caused by cortical deafferentation or cortical irritation. Patients with idiopathic hallucinatory palinopsia should have close follow-up.
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
Quantitative comparisons between different eyes and conditions are usually made using RMS (root mean square). To measure RMS for each type of aberration involves squaring the difference between the aberration and mean value and averaging it across the pupil area. Different kinds of aberrations may have equal RMS across the pupil but have different effects on vision, therefore, RMS error is unrelated to visual performance. The majority of eyes have total RMS values less than 0.3 µm.
The most common method of classifying the shapes of aberration maps is to consider each map as the sum of fundamental shapes or basis functions. One popular set of basis functions are the Zernike polynomials. Each aberration may be positive or negative in value and induces predictable alterations in the image quality.
Because there is no limit to the number of terms that may be used by Zernike polynomials, vision scientists use the first 15 polynomials, based on the fact that they are enough to obtain a highly accurate description of the most common aberrations found in human eye. Among these the most important Zernike coefficients affecting visual quality are coma, spherical aberration, and trefoil.
Zernike polynomials are usually expressed in terms of polar coordinates (ρ,θ), where ρ is radial coordinate and θ is the angle. The advantage of expressing the aberrations in terms of these polynomials includes the fact that the polynomials are independent of one another. For each polynomial the mean value of the aberration across the pupil is zero and the value of the coefficient gives the RMS error for that particular aberration (i.e. the coefficients show the relative contribution of each Zernike mode to the total wavefront error in the eye). However these polynomials have the disadvantage that their coefficients are only valid for the particular pupil diameter they are determined for.
In each Zernike polynomial formula_1, the subscript n is the order of aberration, all the Zernike polynomials in which n=3 are called third-order aberrations and all the polynomials with n=4, fourth order aberrations and so on. formula_2 and formula_3 are usually called secondary Astigmatism and should not cause confusion. The superscript m is called the angular frequency and denotes the number of times the Wavefront pattern repeats itself.
List of Zernike modes and their common names:
Floaters are often readily observed by an ophthalmologist or an optometrist with the use of an ophthalmoscope or slit lamp. However, if the floater is near the retina, it may not be visible to the observer even if it appears large to the patient.
Increasing background illumination or using a pinhole to effectively decrease pupil diameter may allow a person to obtain a better view of his or her own floaters. The head may be tilted in such a way that one of the floaters drifts towards the central axis of the eye. In the sharpened image the fibrous elements are more conspicuous.
The presence of retinal tears with new onset of floaters was surprisingly high (14%; 95% confidence interval, 12–16%) as reported in a meta-analysis published as part of the Rational Clinical Examination Series in the Journal of the American Medical Association. Patients with new onset flashes and/or floaters, especially when associated with visual loss or restriction in the visual field, should seek more urgent ophthalmologic evaluation.
Some suggest that more time spent outdoors during childhood is effective for prevention.
Various methods have been employed in an attempt to decrease the progression of myopia, although studies show mixed results. Many myopia treatment studies have a number of design drawbacks: small numbers, lack of adequate control group, and failure to mask examiners from knowledge of treatments used.
In order to understand how heterophoria occurs, we must understand of how the eye can maintain proper fixation with non aligned visual axis. Heterophoria is actually the misalignment of the visual axis of both eyes. In other words, one or both eyes are not properly fixated to an object of interest. However, we must know that the eyes have a fusional vergence system which corrects this misalignment.
A determination of the prevalence of anisometropia has several difficulties. First of all, the measurement of refractive error may vary from one measurement to the next. Secondly, different criteria have been employed to define anisometropia, and the boundary between anisometropia and isometropia depend on their definition.
Several studies have found that anisometropia occurs more frequently and tends to be more severe for persons with high ametropia, and that this is particularly true for myopes. Anisometropia follows a U-shape distribution according to age: it is frequent in infants aged only a few weeks, is more rare in young children, comparatively more frequent in teenagers and young adults, and more prevalent after presbyopia sets in, progressively increasing into old age.
One study estimated that 6% of those between the ages of 6 and 18 have anisometropia.
Notwithstanding research performed on the biomechanical, structural and optical characteristics of anisometropic eyes, the underlying reasons for anisometropia are still poorly understood.
Anisometropic persons who have strabismus are mostly far-sighted, and almost all of these have (or have had) esotropia. However, there are indications that anisometropia influences the long-term outcome of a surgical correction of an inward squint, and vice versa. More specifically, for patients with esotropia who undergo strabismus surgery, anisometropia may be one of the risk factors for developing consecutive exotropia and poor binocular function may be a risk factor for anisometropia to develop or increase.
While preventive measures, such as taking breaks from activities that cause eye strain are suggested, there are certain treatments which a person suffering from the condition can take to ease the pain or discomfort that the affliction causes. Perhaps the most effective of these is to remove all light sources from a room and allow the eyes to relax in darkness. Free of needing to focus, the eyes will naturally relax over time, and relieve the discomfort that comes with the strain. Cool compresses also help to some degree, though care should be taken to not use anything cold enough to damage the eyes themselves (such as ice). A number of companies have released "computer glasses" which, through the use of specially tinted lenses, help alleviate many of the factors which cause eye strain, though they do not completely prevent it. Rather, they just make it harder to strain the eye.
Suppression may treated with vision therapy, though there is a wide range of opinions on long-term effectiveness between eye care professionals, with little scientific evidence of long-term improvement of suppression, if the underlying cause is not addressed (strabismus, amblyopia, etc.).
A diagnosis of myopia is typically made by an eye care professional, usually an optometrist or ophthalmologist. During a refraction, an autorefractor or retinoscope is used to give an initial objective assessment of the refractive status of each eye, then a phoropter is used to subjectively refine the patient's eyeglass prescription. Other types of refractive error are hyperopia, astigmatism, and presbyopia.