Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Peripheral neuropathy may first be considered when an individual reports symptoms of numbness, tingling, and pain in feet. After ruling out a lesion in the central nervous system as a cause, diagnosis may be made on the basis of symptoms, laboratory and additional testing, clinical history, and a detailed examination.
During physical examination, specifically a neurological examination, those with generalized peripheral neuropathies most commonly have distal sensory or motor and sensory loss, although those with a pathology (problem) of the nerves may be perfectly normal; may show proximal weakness, as in some inflammatory neuropathies, such as Guillain–Barré syndrome; or may show focal sensory disturbance or weakness, such as in mononeuropathies. Classically, ankle jerk reflex is absent in peripheral neuropathy.
A physical examination will involve testing the deep ankle reflex as well as examining the feet for any ulceration. For large fiber neuropathy, an exam will usually show an abnormally decreased sensation to vibration, which is tested with a 128-Hz tuning fork, and decreased sensation of light touch when touched by a nylon monofilament.
Diagnostic tests include electromyography (EMG) and nerve conduction studies (NCSs), which assess large myelinated nerve fibers. Testing for small-fiber peripheral neuropathies often relates to the autonomic nervous system function of small thinly- and unmyelinated fibers. These tests include a sweat test and a tilt table test. Diagnosis of small fiber involvement in peripheral neuropathy may also involve a skin biopsy in which a 3 mm-thick section of skin is removed from the calf by a punch biopsy, and is used to measure the skin intraepidermal nerve fiber density (IENFD), the density of nerves in the outer layer of the skin. Reduced density of the small nerves in the epidermis supports a diagnosis of small-fiber peripheral neuropathy.
Laboratory tests include blood tests for vitamin B-12 levels, a complete blood count, measurement of thyroid stimulating hormone levels, a comprehensive metabolic panel screening for diabetes and pre-diabetes, and a serum immunofixation test, which tests for antibodies in the blood.
In terms of the differential diagnosis for polyneuropathy one must look at the following:
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
The diagnosis of polyneuropathies begins with a history and physical examination to ascertain the pattern of the disease process (such as-arms, legs, distal, proximal) if they fluctuate, and what deficits and pain are involved. If pain is a factor, determining where and how long the pain has been present is important, one also needs to know what disorders are present within the family and what diseases the person may have. Although diseases often are suggested by the physical examination and history alone, tests that may be employed include: electrodiagnostic testing, serum protein electrophoresis, nerve conduction studies, urinalysis, serum creatine kinase (CK) and antibody testing (nerve biopsy is sometimes done).
Other tests may be used, especially tests for specific disorders associated with polyneuropathies, quality measures have been developed to diagnose patients with distal symmetrical polyneuropathy (DSP).
Hereditary spastic paraplegias can be classified based on the symptoms; mode of inheritance; the patient’s age at onset; the affected genes; and biochemical pathways involved.
Transcutaneous electrical nerve stimulation therapy may be effective and safe in the treatment of diabetic peripheral neuropathy. A recent review of three trials involving 78 patients found some improvement in pain scores after 4 and 6, but not 12 weeks of treatment and an overall improvement in neuropathic symptoms at 12 weeks. Another review of four trials found significant improvement in pain and overall symptoms, with 38% of patients in one trial becoming asymptomatic. The treatment remains effective even after prolonged use, but symptoms return to baseline within a month of cessation of treatment.
Initial screening for CIP/CIM may be performed using an objective scoring system for muscle strength. The Medical Research Council (MRC) score is one such tool, and sometimes used to help identify CIP/CIM patients in research studies. The MRC score involves assessing strength in 3 muscle groups in the right and left sides of both the upper and lower extremities. Each muscle tested is given a score of 0-5, giving a total possible score of 60. An MRC score less than 48 is suggestive of CIP/CIM. However, the tool requires that patients be awake and cooperative, which is often not the case. Also, the screening tool is non-specific, because it does not identify the cause a person's muscle weakness.
Once weakness is detected, the evaluation of muscle strength should be repeated several times. If the weakness persists, then a muscle biopsy, a nerve conduction study (electrophysiological studies), or both should be performed.
Patients with hereditary motor and sensory neuropathies are diagnosed through a physical evaluation that looks for muscle atrophy, weakness, and sensory responses. In addition to this, EMG (electromyography) and motor nerve conduction tests can help clinicians decide what type of motor and sensory neuropathy it is and how severe the disease is. Final confirmation can come through genetic testing.
Patients with diabetes and proximal (hip, thigh) pain and weakness are often suspected of having diabetic amyotrophy. More definitive diagnosis is commonly made with electrodiagnostic studies including nerve conduction studies (NCS) and electromyogram (EMG). Diabetic amyotrophy is often a diagnosis of exclusion in diabetic patients with a lumbosacral plexopathy for whom no other cause of lumbosacral plexopathy can be determined.
Initial diagnosis of HSPs relies upon family history, the presence or absence of additional signs and the exclusion of other nongenetic causes of spasticity, the latter being particular important in sporadic cases.
Cerebral and spinal MRI is an important procedure performed in order to rule out other frequent neurological conditions, such as multiple sclerosis, but also to detect associated abnormalities such as cerebellar or corpus callosum atrophy as well as white matter abnormalities. Differential diagnosis of HSP should also exclude spastic diplegia which presents with nearly identical day-to-day effects and even is treatable with similar medicines such as baclofen and orthopedic surgery; at times, these two conditions may look and feel so similar that the only "perceived" difference may be HSP's hereditary nature versus the explicitly non-hereditary nature of spastic diplegia (however, unlike spastic diplegia and other forms of spastic cerebral palsy, HSP cannot be reliably treated with selective dorsal rhizotomy).
Ultimate confirmation of HSP diagnosis can only be provided by carrying out genetic tests targeted towards known genetic mutations.
Diabetic peripheral neuropathy is the most likely diagnosis for someone with diabetes who has pain in a leg or foot, although it may also be caused by vitamin B deficiency or osteoarthritis. A 2010 review in the Journal of the American Medical Association's "Rational Clinical Examination Series" evaluated the usefulness of the clinical examination in diagnosing diabetic peripheral neuropathy. While the physician typically assesses the appearance of the feet, presence of ulceration, and ankle reflexes, the most useful physical examination findings for large fiber neuropathy are an abnormally decreased vibration perception to a 128-Hz tuning fork (likelihood ratio (LR) range, 16–35) or pressure sensation with a 5.07 Semmes-Weinstein monofilament (LR range, 11–16). Normal results on vibration testing (LR range, 0.33–0.51) or monofilament (LR range, 0.09–0.54) make large fiber peripheral neuropathy from diabetes less likely. Combinations of signs do not perform better than these 2 individual findings. Nerve conduction tests may show reduced functioning of the peripheral nerves, but seldom correlate with the severity of diabetic peripheral neuropathy and are not appropriate as routine tests for the condition.
A skin biopsy for the measurement of epidermal nerve fiber density is an increasingly common technique for the diagnosis of small fiber peripheral neuropathy. Physicians can biopsy the skin with a 3-mm circular punch tool and immediately fix the specimen in 2% paraformaldehyde lysine-periodate or Zamboni's fixative. Specimens are sent to a specialized laboratory for processing and analysis where the small nerve fibers are quantified by a neuropathologist to obtain a diagnostic result.
This skin punch biopsy measurement technique is called intraepidermal nerve fiber density (IENFD). The following table describes the IENFD values in males and females of a 3 mm biopsy 10-cm above the lateral malleolus (above ankle outer side of leg). Any value measured below the 0.05 Quantile IENFD values per age span, is considered a reliable positive diagnosis for Small Fiber Peripheral Neuropathy.
The serum creatine phosphokinase (CPK) can be mildly elevated. While the CPK is often a good marker for damage to muscle tissue, it is not a helpful marker in CIP/CIM, because CIP/CIM is a gradual process and does not usually involve significant muscle cell death (necrosis). Also, even if necrosis is present, it may be brief and is therefore easily missed. If a lumbar puncture (spinal tap) is performed, the protein level in the cerebral spinal fluid would be normal.
The diagnosis of small fiber neuropathy often requires ancillary testing. Nerve conduction studies and electromyography are commonly used to evaluate large myelinated sensory and motor nerve fibers, but are ineffective in diagnosing small fiber neuropathies.
Quantitative sensory testing (QST) assesses small fiber function by measuring temperature and vibratory sensation. Abnormal QST results can be attributed to dysfunction in the central nervous system. Furthermore, QST is limited by a patient’s subjective experience of pain sensation. Quantitative sudomotor axon reflex testing (QSART) measures sweating response at local body sites to evaluate the small nerve fibers that innervate sweat glands.
Charcot–Marie–Tooth disease was first described in 1886 by Jean-Martin Charcot, Pierre Marie, and independently Howard Henry Tooth. In the 1950s, further classification occurred and separated patients into two distinct groups. Group one was characterized by slow nerve conduction velocities and demyelinating neuropathy. Group two was characterized by mostly normal nerve conduction velocities and degeneration of axons. In 1968, HMSN were classified again into seven groups:
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
Diabetic neuropathy encompasses a series of different neuropathic syndromes which can be schematized in the following way:
- Focal and multifocal neuropathies:
- Mononeuropathy
- Amyotrophy, radiculopathy
- Multiple lesions "mononeuritis multiplex"
- Entrapment (e.g. median, ulnar, peroneal)
- Symmetrical neuropathies:
- Acute sensory
- Autonomic
- Distal symmetrical polyneuropathy (DSPN), the diabetic type of which is also known as diabetic peripheral neuropathy (DPN) (most common presentation)
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Radial neuropathy is not necessarily permanent. The majority of radial neuropathies due to an acute compressive event (Saturday night palsy) do recover without intervention. If the injury is demyelinating (meaning only the myelin sheath surrounding the nerve is damaged), then full recovery typically occurs within 2–4 weeks. If the injury is axonal (meaning the underlying nerve fiber itself is damaged) then full recovery may take months or years, or may never occur. EMG and nerve conduction studies are typically performed to diagnose the extent and distribution of the damage, and to help with prognosis for recovery.
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
In order to diagnose radial nerve dysfunction, a doctor will conduct a physical examination. During the exam of the arm, wrist, and hand, the doctor will look for: difficulty straightening the arm at the elbow; trouble turning the arm outward; difficulty lifting the wrist; muscle loss or atrophy in the forearm; weakness of the wrist and/or fingers. In addition, tests may need to be conducted to confirm the doctors findings. These tests include: blood tests; MRI of the neck and shoulders to screen for other problems; nerve biopsy; nerve conduction tests; ultrasound of the elbow.
Proper management of diabetes mellitus can prevent proximal diabetic neuropathy from ever occurring.
The incidence of proximal diabetic neuropathy incidence is thought to be correlated to blood glucose control in diabetics, and is likely reversible with better control.
Medication helps reduce the pain involved in proximal diabetic neuropathy. Most patients take oral medication that is prescribed by a doctor. Common types of medication used to treat diabetic amyotrophy include anticonvulsives (e.g. gabapentin, pregabalin) as well as opioid medications, although the latter category is not optimally indicated for neuropathic pain.
Among the methods of diagnosing tropical spastic paraparesis are MRI (magnetic resonance imaging) and lumbar puncture (which may show lymphocytosis).
PMA is a diagnosis of exclusion, there is no specific test which can conclusively establish whether a patient has the condition. Instead, a number of other possibilities have to be ruled out, such as multifocal motor neuropathy or spinal muscular atrophy. Tests used in the diagnostic process include MRI, clinical examination, and EMG. EMG tests in patients who do have PMA usually show denervation (neurone death) in most affected body parts, and in some unaffected parts too.
It typically takes longer to be diagnosed with PMA than ALS, an average of 20 months for PMA vs 15 months in ALS/MND.
In terms of the diagnosis of radial neuropathy the following tests/exams can be done to ascertain the condition: