Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Mitochondrial diseases are usually detected by analysing muscle samples, where the presence of these organelles is higher. The most common tests for the detection of these diseases are:
1. Southern blot to detect big deletions or duplications
2. PCR and specific mutation analysis
3. Sequencing
It is not necessary to biopsy an ocular muscle to demonstrate histopathologic abnormalities. Cross-section of muscle fibers stained with Gömöri trichrome stain is viewed using light microscopy. In muscle fibers containing high ratios of the mutated mitochondria, there is a higher concentration of mitochondria. This gives these fibers a darker red color, causing the overall appearance of the biopsy to be described as "ragged red fibers. Abnormalities may also be demonstrated in muscle biopsy samples using other histochemical studies such as mitochondrial enzyme stains, by electron microscopy, biochemical analyses of the muscle tissue (ie electron transport chain enzyme activities), and by analysis of muscle mitochondrial DNA. "
A neuro-ophthalmologist is usually involved in the diagnosis and management of KSS. An individual should be suspected of having KSS based upon clinical exam findings. Suspicion for myopathies should be increased in patients whose ophthalmoplegia does not match a particular set of cranial nerve palsies (oculomotor nerve palsy, fourth nerve palsy, sixth nerve palsy). Initially, imaging studies are often performed to rule out more common pathologies. Diagnosis may be confirmed with muscle biopsy, and may be supplemented with PCR determination of mtDNA mutations.
Although no cure currently exists, there is hope in treatment for this class of hereditary diseases with the use of an embryonic mitochondrial transplant.
In terms of the diagnosis of Ullrich congenital muscular dystrophy upon inspection follicular hyperkeratosis, may be a dermatological indicator, additionally also serum creatine kinase may be mildly above normal. Other exams/methods to ascertain if the individual has Ullrich congenital muscular dystrophy are:
A diagnosis of Friedreich's ataxia requires a careful clinical examination, which includes a medical history and a thorough physical exam, in particular looking for balance difficulty, loss of proprioception, absence of reflexes, and signs of neurological problems. Genetic testing now provides a conclusive diagnosis. Other tests that may aid in the diagnosis or management of the disorder include:
- Electromyogram (EMG), which measures the electrical activity of muscle cells,
nerve conduction studies, which measure the speed with which nerves transmit impulses
- Electrocardiogram (ECG), which gives a graphic presentation of the electrical activity or beat pattern of the heart
- Echocardiogram, which records the position and motion of the heart muscle
- Blood tests to check for elevated glucose levels and vitamin E levels
- Magnetic resonance imaging (MRI) or computed tomography (CT) scans, tests which provide brain and spinal cord images that are useful for ruling out other neurological conditions
Spindle transfer, where the nuclear DNA is transferred to another healthy egg cell leaving the defective mitochondrial DNA behind, is a potential treatment procedure that has been successfully carried out on monkeys. Using a similar pronuclear transfer technique, researchers at Newcastle University led by Douglass Turnbull successfully transplanted healthy DNA in human eggs from women with mitochondrial disease into the eggs of women donors who were unaffected. In such cases, ethical questions have been raised regarding biological motherhood, since the child receives genes and gene regulatory molecules from two different women. Using genetic engineering in attempts to produce babies free of mitochondrial disease is controversial in some circles and raises important ethical issues. A male baby was born in Mexico in 2016 from a mother with Leigh syndrome using spindle transfer.
In September 2012 a public consultation was launched in the UK to explore the ethical issues involved. Human genetic engineering was used on a small scale to allow infertile women with genetic defects in their mitochondria to have children.
In June 2013, the United Kingdom government agreed to develop legislation that would legalize the 'three-person IVF' procedure as a treatment to fix or eliminate mitochondrial diseases that are passed on from mother to child. The procedure could be offered from 29 October 2015 once regulations had been established.
Embryonic mitochondrial transplant and protofection have been proposed as a possible treatment for inherited mitochondrial disease, and allotopic expression of mitochondrial proteins as a radical treatment for mtDNA mutation load.
Currently, human clinical trials are underway at GenSight Biologics (ClinicalTrials.gov # NCT02064569) and the University of Miami (ClinicalTrials.gov # NCT02161380) to examine the safety and efficacy of mitochondrial gene therapy in Leber's hereditary optic neuropathy.
A detailed family history should be obtained from at least three generations. In particularly a history to determine if there has been any neonatal and childhood deaths: Also a way to determine if any one of the family members exhibit any of the features of the multi-system disease. Specifically if there has been a maternal inheritance, when the disease is transmitted to females only, or if there is a family member who experienced a multi system involvement such as: Brain condition that a family member has been record to have such asseizures, dystonia, ataxia, or stroke like episodes.The eyes with optic atrophy, the skeletal muscle where there has been a history of myalgia, weakness or ptosis. Also in the family history look for neuropathy and dysautonomia, or observe heart conditions such ascardiomyopathy. The patients history might also exhibit a problem in their kidney, such as proximal nephron dysfunction. An endocrine condition, for example diabetes and hypoparathyroidism. The patient might have also had gastrointestinal condition which could have been due to liver disease, episodes of nausea or vomiting. Multiple lipomas in the skin, sideroblastic anemia and pancytopenia in the metabolic system or short stature might all be examples of patients with possible symptoms of MERRF disease.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
The clinical diagnosis is backed up by investigative findings. Citrulline level in blood is decreased. Mitochondrial studies or NARP mtDNA evaluation plays a role in genetic diagnosis which can also be done prenatally.
Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. On biopsy, the muscle tissue of patients with these diseases usually demonstrate "ragged red" muscle fibers. These ragged-red fibers contain mild accumulations of glycogen and neutral lipids, and may show an increased reactivity for succinate dehydrogenase and a decreased reactivity for cytochrome c oxidase. Inheritance was believed to be maternal (non-Mendelian extranuclear). It is now known that certain nuclear DNA deletions can also cause mitochondrial myopathy such as the OPA1 gene deletion. There are several subcategories of mitochondrial myopathies.
In terms of possible research for Ullrich congenital muscular dystrophy one source indicates that cyclosporine A might be of benefit to individuals with this CMD type.
According to a review by Bernardi, et al., cyclosporin A (CsA) used to treat collagen VI muscular dystrophies demonstrates a normalization of mitochondrial reaction to rotenone.
Succinic acid has been used successfully to treat MELAS syndrome, and also Leighs disease. Patients are managed according to what areas of the body are affected at a particular time. Enzymes, amino acids, antioxidants and vitamins have been used.
Also the following supplements may help:
- CoQ10 has been helpful for some MELAS patients. Nicotinamide has been used because complex l accepts electrons from NADH and ultimately transfers electrons to CoQ10.
- Riboflavin has been reported to improve the function of a patient with complex l deficiency and the 3250T-C mutation.
- The administration of L-arginine during the acute and interictal periods may represent a potential new therapy for this syndrome to reduce brain damage due to impairment of vasodilation in intracerebral arteries due to nitric oxide depletion.
- There is also a case report where succinate was successfully used to treat uncontrolled convulsions in MELAS patients, although this treatment modality is yet to be thoroughly investigated or widely recommended.
The diagnosis varies from individual to individual, each is evaluated and diagnosed according to their age, clinical phenotype and pressed inheritance pattern. If the Individual has been experiencing myoclonus the doctor will run a series of genetic studies to determine if its a mitochondrial disorder.
The molecular genetic studies are run to identify the reason of for the mutations underlying the mitochondrial dysfunction. This approach will avoid the need for a muscle biopsy or an exhaustive metabolic evaluation. After the sequencing the mitochondrial genomes, four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation. The remaining mutations only account for 10% of cases, and the remaining 10% of the patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
If a patient does not exhibit mitochondrial DNA mutations, there are other ways that they can be diagnosed with MERRF. They can go through computed tomography (CT) or magnetic resonance imaging (MRI).The classification for the severity of MERRF syndrome is difficult to distinguish since most individuals will exhibit multi-symptoms. For children with complex neurologic or multi-system involvement, as the one described below, is often necessary.
Congenital lactic acidosis can be suspected based on blood or cerebrospinal fluid tests showing high levels of lactate; the underlying genetic mutation can only be diagnosed with genetic testing.
The severity and prognosis vary with the type of mutation involved.
The exact incidence of MELAS is unknown. It is one of the more common conditions in a group known as mitochondrial diseases. Together, mitochondrial diseases occur in about 1 in 4,000 people.
MDDS is diagnosed based on systemic symptoms presenting in infants, followed by a clinical examination and laboratory tests (for example, high lactate levels are common) medical imaging, and usually is finally confirmed and formally identified by genetic testing.
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
RG2833, a histone deacetylase inhibitor developed by Repligen, was acquired by BioMarin Pharmaceutical in January 2014. The first human trials with this compound began in 2012.
Horizon Pharma's development plan of interferon gamma-1B for treatment of FA was given fast track designation by the Food and Drug Administration in 2015.
In its trials released in December 2016, however, the results showed no improvements over placebo in patients.
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
Without a known family history of LHON the diagnosis usually requires a neuro-ophthalmological evaluation and blood testing for mitochondrial DNA assessment. It is important to exclude other possible causes of vision loss and important associated syndromes such as heart electrical conduction system abnormalities. The prognosis for those affected left untreated is almost always that of continued significant visual loss in both eyes. Regular corrected visual acuity and perimetry checks are advised for follow up of affected individuals. There is beneficial treatment available for some cases of this disease especially for early onset disease. Also, experimental treatment protocols are in progress. Genetic counselling should be offered. Health and lifestyle choices should be reassessed particularly in light of toxic and nutritional theories of gene expression. Vision aides assistance and work rehabilitation should be used to assist in maintaining employment.
For those who are carriers of a LHON mutation, preclinical markers may be used to monitor progress. For example, fundus photography can monitor nerve fiber layer swelling. Optical coherence tomography can be used for more detailed study of retinal nerve fiber layer thickness. Red green color vision testing may detect losses. Contrast sensitivity may be diminished. There could be an abnormal electroretinogram or visual evoked potentials. Neuron-specific enolase and axonal heavy chain neurofilament blood markers may predict conversion to affected status.
Cyanocobalamin (a form of B12) may also be used.
Avoiding optic nerve toxins is generally advised, especially tobacco and alcohol. Certain prescription drugs are known to be a potential risk, so all drugs should be treated with suspicion and checked before use by those at risk. Ethambutol, in particular, has been implicated as triggering visual loss in carriers of LHON. In fact, toxic and nutritional optic neuropathies may have overlaps with LHON in symptoms, mitochondrial mechanisms of disease and management. Of note, when a patient carrying or suffering from LHON or toxic/nutritional optic neuropathy suffers a hypertensive crisis as a possible complication of the disease process, nitroprusside (trade name: Nipride) should not be used due to increased risk of optic nerve ischemia in response to this anti-hypertensive in particular.
Idebenone has been shown in a small placebo controlled trial to have modest benefit in about half of patients. People most likely to respond best were those treated early in onset.
α-Tocotrienol-quinone, a vitamin E metabolite, has had some success in small open label trials in reversing early onset vision loss.
There are various treatment approaches which have had early trials or are proposed, none yet with convincing evidence of usefulness or safety for treatment or prevention including brimonidine, minocycline, curcumin,
glutathione, near infrared light treatment, and viral vector techniques.
"Three person in vitro fertilization" is a proof of concept research technique for preventing mitochondrial disease in developing human fetuses. So far, viable macaque monkeys have been produced. But ethical and knowledge hurdles remain before use of the technique in humans is established.
Other diseases can have a similar clinical presentation to Leigh syndrome; excluding other causes of similar clinical symptoms is often a first step to diagnosing Leigh disease. Conditions that can appear similar to Leigh disease include perinatal asphyxia, kernicterus, carbon monoxide poisoning, methanol toxicity, thiamine deficiency, Wilson's disease, biotin-responsive basal ganglia disease, and some forms of encephalitis. Perinatal asphyxia can cause bilateral ganglial lesions and damage to the thalamus, which are similar to the signs seen with Leigh syndrome. When hyperbilirubinemia is not treated with phototherapy, the bilirubin can accumulate in the basal ganglia and cause lesions similar to those seen in Leigh syndrome. This is not common since the advent of phototherapy.
It is important to differentiate CPEO from other pathologies that may cause an ophthalmoplegia. There are specific therapies used for these pathologies.
CPEO is diagnosed via muscle biopsy. On examination of muscle fibers stained with Gömöri trichrome stain, one can see an accumulation of enlarged mitochondria. This produces a dark red staining of the muscle fibers given the name “ragged red fibers”. While ragged red fibers are seen in normal aging, amounts in excess of normal aging give a diagnosis of a mitochondrial myopathy.
Polymerase Chain Reaction (PCR), from a sample of blood or muscle tissue can determine a mutation of the mtDNA.
Elevated acetylcholine receptor antibody level which is typically seen in myasthenia gravis has been seen in certain patients of mitochondrial associated ophthalmoplegia.
It is important to have a dilated eye exam to determine if there is pigmentary retinopathy that may signify Kearns-Sayre syndrome which is associated with cardiac abnormalities.
MRI may be helpful in the diagnosis, in one study volumes of medial rectus, lateral rectus, and inferior rectus muscles in CPEO were not smaller than normal (in contrast to the profound atrophy typical of neurogenic paralysis). Although volumes of the superior rectus muscle-levator complex and superior oblique were significantly reduced.