Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An electroencephalogram (EEG) can assist in showing brain activity suggestive of an increased risk of seizures. It is only recommended for those who are likely to have had an epileptic seizure on the basis of symptoms. In the diagnosis of epilepsy, electroencephalography may help distinguish the type of seizure or syndrome present. In children it is typically only needed after a second seizure. It cannot be used to rule out the diagnosis and may be falsely positive in those without the disease. In certain situations it may be useful to perform the EEG while the affected individual is sleeping or sleep deprived.
Diagnostic imaging by CT scan and MRI is recommended after a first non-febrile seizure to detect structural problems in and around the brain. MRI is generally a better imaging test except when bleeding is suspected, for which CT is more sensitive and more easily available. If someone attends the emergency room with a seizure but returns to normal quickly, imaging tests may be done at a later point. If a person has a previous diagnosis of epilepsy with previous imaging, repeating the imaging is usually not needed even if there are subsequent seizures.
For adults, the testing of electrolyte, blood glucose and calcium levels is important to rule out problems with these as causes. An electrocardiogram can rule out problems with the rhythm of the heart. A lumbar puncture may be useful to diagnose a central nervous system infection but is not routinely needed. In children additional tests may be required such as urine biochemistry and blood testing looking for metabolic disorders.
A high blood prolactin level within the first 20 minutes following a seizure may be useful to help confirm an epileptic seizure as opposed to psychogenic non-epileptic seizure. Serum prolactin level is less useful for detecting focal seizures. If it is normal an epileptic seizure is still possible and a serum prolactin does not separate epileptic seizures from syncope. It is not recommended as a routine part of the diagnosis of epilepsy.
Diagnosis of epilepsy can be difficult. A number of other conditions may present very similar signs and symptoms to seizures, including syncope, hyperventilation, migraines, narcolepsy, panic attacks and psychogenic non-epileptic seizures (PNES). In particular a syncope can be accompanied by a short episode of convulsions. Nocturnal frontal lobe epilepsy, often misdiagnosed as nightmares, was considered to be a parasomnia but later identified to be an epilepsy syndrome. Attacks of the movement disorder paroxysmal dyskinesia may be taken for epileptic seizures. The cause of a drop attack can be, among many others, an atonic seizure.
Children may have behaviors that are easily mistaken for epileptic seizures but are not. These include breath-holding spells, bed wetting, night terrors, tics and shudder attacks. Gastroesophageal reflux may cause arching of the back and twisting of the head to the side in infants, which may be mistaken for tonic-clonic seizures.
Misdiagnosis is frequent (occurring in about 5 to 30% of cases). Different studies showed that in many cases seizure-like attacks in apparent treatment-resistant epilepsy have a cardiovascular cause. Approximately 20% of the people seen at epilepsy clinics have PNES and of those who have PNES about 10% also have epilepsy; separating the two based on the seizure episode alone without further testing is often difficult.
An electroencephalography is only recommended in those who likely had an epileptic seizure and may help determine the type of seizure or syndrome present. In children it is typically only needed after a second seizure. It cannot be used to rule out the diagnosis and may be falsely positive in those without the disease. In certain situations it may be useful to prefer the EEG while sleeping or sleep deprived.
Diagnostic imaging by CT scan and MRI is recommended after a first non-febrile seizure to detect structural problems inside the brain. MRI is generally a better imaging test except when intracranial bleeding is suspected. Imaging may be done at a later point in time in those who return to their normal selves while in the emergency room. If a person has a previous diagnosis of epilepsy with previous imaging repeat imaging is not usually needed with subsequent seizures.
In adults, testing electrolytes, blood glucose and calcium levels is important to rule these out as causes, as is an electrocardiogram. A lumbar puncture may be useful to diagnose a central nervous system infection but is not routinely needed. Routine antiseizure medical levels in the blood are not required in adults or children. In children additional tests may be required.
A high blood prolactin level within the first 20 minutes following a seizure may be useful to confirm an epileptic seizure as opposed to psychogenic non-epileptic seizure. Serum prolactin level is less useful for detecting partial seizures. If it is normal an epileptic seizure is still possible and a serum prolactin does not separate epileptic seizures from syncope. It is not recommended as a routine part of diagnosis epilepsy.
Differentiating an epileptic seizure from other conditions such as syncope can be difficult. Other possible conditions that can mimic a seizure include: decerebrate posturing, psychogenic seizures, tetanus, dystonia, migraine headaches, and strychnine poisoning. In addition, 5% of people with a positive tilt table test may have seizure-like activity that seems to be due to cerebral hypoxia. Convulsions may occur due to psychological reasons and this is known as a psychogenic non-epileptic seizure. Non-epileptic seizures may also occur due to a number of other reasons.
The test is particularly indicated in children who have had cluster seizures in series. It is also recommended for patients who are diagnosed GEFS+ and when the seizures are associated with fever, infection, experienced regression, delayed cognitive growth or behavioral problems. The test is typically ordered by neurologists. The diagnostic test can be done by drawing blood or saliva of the patient and their immediate family. It is analyzed in laboratories that specialize in genetic testing. Genetic testing can aid in a firmer diagnosis and understanding of the disorder, may aid in identifying the optimal treatment plan and if positive, testing of the parents can determine if they are carriers. (See Genetic Counseling)
PCDH19 gene-related epilepsy is clinically based on patient and family seizure history, cognitive and behavioral neuropsychological evaluation, neurological examination, electroencephalogram (EEG) studies, and long term observation. Diagnosis is confirmed using molecular testing for PCDH19 mutations.
The diagnosis or suspicion of LGS is often a question of probability rather than certainty. This is because the varied presentations of LGS share features with other disorders, many of which may be said to have overlapping characteristics.
The diagnosis is more obvious when the epilepsy has frequent and manifold attacks, with the classic pattern on the electro-encephalogram (EEG); the latter is a slowed rhythm with Spike-wave-pattern, or with a multifocal and generalizing Sharp-slow-wave-discharges at 1.5–2.5 Hz. During sleep, frequently, tonic patterns can be seen. But variations of these patterns are known in patients with no diagnosis other than LGS, and they can differ bilaterally, and from time to time, within the same patient.
General medical investigation usually reveals developmental delay and cognitive deficiencies in children with true LGS. These may precede development of seizures, or require up to two years after the seizures begin, in order to become apparent.
Exclusion of organic or structural brain lesions is also important in establishing a correct diagnosis of LGS; this may require magnetic resonance imaging (MRI) or computerized tomography (CT). An important differential diagnosis is 'Pseudo-Lennox-Syndrome', which differs from LGS, in that there are no tonic seizures; sleeping EEG provides the best basis for distinguishing between the two.
Criteria for diagnosis of abdominal epilepsy includes frequent periodic abdominal symptoms, an abnormal electroencephalogram (EEG) and significant improvement of gastrointestinal symptoms after taking anti-seizure medication. Medical testing for diagnosis can be completed using MRI scans of the brain, CT scans and ultrasounds of the abdomen, endoscopy of the gastrointestinal tract, and blood tests.
Intravenous immunoglobulin therapy has been used in Lennox–Gastaut syndrome as early as 1986, when van Rijckevorsel-Harmant and colleagues used it in seven patients with ostensibly idiopathic LGS and saw EEG improvement and decreased seizure frequency in six of them.
The most important factor in diagnosing a patient with vertiginous epilepsy is the subject’s detailed description of the episode. However, due to the associated symptoms of the syndrome a subject may have difficulty remembering the specifics of the experience. This makes it difficult for a physician to confirm the diagnosis with absolute certainty. A questionnaire may be used to help patients, especially children, describe their symptoms. Clinicians may also consult family members for assistance in diagnosis, relying on their observations to help understand the episodes. In addition to the description of the event, neurological, physical and hematologic examinations are completed to assist in diagnosis. For proper diagnosis, an otological exam (examination of the ear) should also be completed to rule out disorders of the inner ear, which could also be responsible for manifestations of vertigo. This may include an audiological assessment and vestibular function test. During diagnosis, history-taking is essential in determining possible causes of vertiginous epilepsy as well as tracking the progress of the disorder over time.
Other means used in diagnosis of vertiginous epilepsy include:
- Electroencephalography (EEG)
- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
- Neuropsychological testing
The EEG measures electrical activity in the brain, allowing a physician to identify any unusual patterns. While EEGs are good for identifying abnormal brain activity is it not helpful in localizing where the seizure originates because they spread so quickly across the brain. MRIs are used to look for masses or lesions in the temporal lobe of the brain, indicating possible tumors or cancer as the cause of the seizures. When using a PET scan, a physician is looking to detect abnormal blood flow and glucose metabolism in the brain, which is visible between seizures, to indicate the region of origin.
Some features are more or less likely to suggest PNES but they are not conclusive and should be considered within the broader clinical picture. Features that are common in PNES but rarer in epilepsy include: biting the tip of the tongue, seizures lasting more than 2 minutes (easiest factor to distinguish), seizures having a gradual onset, a fluctuating course of disease severity, the eyes being closed during a seizure, and side to side head movements. Features that are uncommon in PNES include automatisms (automatic complex movements during the seizure), severe tongue biting, biting the inside of the mouth, and incontinence.
If a patient with suspected PNES has an episode during a clinical examination, there are a number of signs that can be elicited to help support or refute the diagnosis of PNES. Compared to patients with epilepsy, patients with PNES will tend to resist having their eyes forced open (if they are closed during the seizure), will stop their hands from hitting their own face if the hand is dropped over the head, and will fixate their eyes in a way suggesting an absence of neurological interference. Mellers et al. warn that such tests are neither conclusive nor impossible for a determined patient with factitious disorder to "pass" through faking convincingly.
The differential diagnosis of PNES firstly involves ruling out epilepsy as the cause of the seizure episodes, along with other organic causes of non-epileptic seizures, including syncope, migraine, vertigo, anoxia, hypoglycemia, and stroke. However, between 5-20% of patients with PNES also have epilepsy. Frontal lobe seizures can be mistaken for PNES, though these tend to have shorter duration, stereotyped patterns of movements and occurrence during sleep. Next, an exclusion of factitious disorder (a subconscious somatic symptom disorder, where seizures are caused by psychological reasons) and malingering (simulating seizures intentionally for conscious personal gain – such as monetary compensation or avoidance of criminal punishment) is conducted. Finally other psychiatric conditions that may superficially resemble seizures are eliminated, including panic disorder, schizophrenia, and depersonalisation disorder.
The most conclusive test to distinguish epilepsy from PNES is long term video-EEG monitoring, with the aim of capturing one or two episodes on both videotape and EEG simultaneously (some clinicians may use suggestion to attempt to trigger an episode). Conventional EEG may not be particularly helpful because of a high false-positive rate for abnormal findings in the general population, but also of abnormal findings in patients with some of the psychiatric disorders that can mimic PNES. Additional diagnostic criteria are usually considered when diagnosing PNES from long term video-EEG monitoring because frontal lobe epilepsy may be undetectable with surface EEGs.
Following most tonic-clonic or complex partial epileptic seizures, blood levels of serum prolactin rise, which can be detected by laboratory testing if a sample is taken in the right time window. However, due to false positives and variability in results this test is relied upon less frequently.
The lack of generally recognized clinical recommendations available are a reflection of the dearth of data on the effectiveness of any particular clinical strategy, but on the basis of present evidence, the following may be relevant:
- Epileptic seizure control with the appropriate use of medication and lifestyle counseling is the focus of prevention.
- Reduction of stress, participation in physical exercises, and night supervision might minimize the risk of SUDEP.
- Knowledge of how to perform the appropriate first-aid responses to seizure by persons who live with epileptic people may prevent death.
- People associated with arrhythmias during seizures should be submitted to extensive cardiac investigation with a view to determining the indication for on-demand cardiac pacing.
- Successful epilepsy surgery may reduce the risk of SUDEP, but this depends on the outcome in terms of seizure control.
- The use of anti suffocation pillows have been advocated by some practitioners to improve respiration while sleeping, but their effectiveness remain unproven because experimental studies are lacking.
- Providing information to individuals and relatives about SUDEP is beneficial.
The trigger needs to be identified before prescribing anti-epileptics. The most commonly prescribed drugs for reflex epilepsy are valproate, carbamazepine and clonazepam, though lamotrigine, levetiracetam are promising.
Between 10 and 30% of people who have status epilepticus die within 30 days. The great majority of these people have an underlying brain condition causing their status seizure such as brain tumor, brain infection, brain trauma, or stroke. However, people with diagnosed epilepsy who have a status seizure also have an increased risk of death if their condition is not stabilized quickly, their medication and sleep regimen adapted and adhered to, and stress and other stimulant (seizure trigger) levels controlled.
However, with optimal neurological care, adherence to the medication regimen, and a good prognosis (no other underlying uncontrolled brain or other organic disease), the person—even people who have been diagnosed with epilepsy—in otherwise good health can survive with minimal or no brain damage, and can decrease risk of death and even avoid future seizures.
Diagnosis is typically made based on patient history. The physical examination should be normal. The primary diagnosis for JME is a good knowledge of patient history and the neurologist's familiarity with the myoclonic jerks, which are the hallmark of the syndrome. Additionally, an electroencephalogram (EEG), will indicate a pattern of waves and spikes associated with the syndrome. The EEG generally shows a very characteristic pattern with generalized 4–6 Hz polyspike and slow wave discharges. These discharges are often provoked by photic stimulation (blinking lights) and sometimes hyperventilation. Both a magnetic resonance imaging scan (MRI) and computed tomography scan (CT scan) should appear normal in JME patients.
Many antiepileptic drugs are used for the management of canine epilepsy. Oral phenobarbital, in particular, and imepitoin are considered to be the most effective antiepileptic drugs and usually used as ‘first line’ treatment. Other anti-epileptics such as zonisamide, primidone, gabapentin, pregabalin, sodium valproate, felbamate and topiramate may also be effective and used in various combinations. A crucial part of the treatment of pets with epilepsy is owner education to ensure compliance and successful management.
Most children who develop epilepsy are treated conventionally with anticonvulsants. In about 70% of cases of childhood epilepsy, medication can completely control seizures. Unfortunately, medications come with an extensive list of side effects that range from mild discomfort to major cognitive impairment. Usually, the adverse cognitive effects are ablated following dose reduction or cessation of the drug.
Medicating a child is not always easy. Many pills are made only to be swallowed, which can be difficult for a child. For some medications, chewable versions do exist.
The ketogenic diet is used to treat children who have not responded successfully to other treatments. This diet is low in carbohydrates, adequate in protein and high in fat. It has proven successful in two thirds of epilepsy cases.
In some cases, severe epilepsy is treated with the hemispherectomy, a drastic surgical procedure in which part or all of one of the hemispheres of the brain is removed.
Like other forms of epilepsy, abdominal epilepsy is treated with anticonvulsant drugs, such as phenytoin. Since no controlled studies exist, however, other drugs may be equally effective.
Diagnosis can be made by EEG. In case of epileptic spasms, EEG shows typical patterns.
There are three types of epilepsy in dogs: reactive, secondary, and primary. Reactive epileptic seizures are caused by metabolic issues, such as low blood sugar or kidney or liver failure. Epilepsy attributed to brain tumor, stroke or other trauma is known as secondary or symptomatic epilepsy.
There is no known cause for primary or idiopathic epilepsy, which is only diagnosed by eliminating other possible causes for the seizures. Dogs with idiopathic epilepsy experience their first seizure between the ages of one and three. However, the age at diagnosis is only one factor in diagnosing canine epilepsy, as one study found cause for seizures in one-third of dogs between the ages of one and three, indicating secondary or reactive rather than primary epilepsy.
A veterinarian's initial work-up for a dog presenting with a history of seizures may include a physical and neurological exam, a complete blood count, serum chemistry profile, urinalysis, bile tests, and thyroid function tests. These tests verify seizures and may determine cause for reactive or secondary epilepsy. Veterinarians may also request that dog owners keep a "seizure log" documenting the timing, length, severity, and recovery of each seizure, as well as dietary or environmental changes.
Seven anti-epileptic drugs are approved for use in cases of suspected primary generalized epilepsy:
- Felbamate
- Levetiracetam
- Zonisamide
- Topiramate
- Valproate
- Lamotrigine
- Perampanel
Valproate, a relatively old drug, is often considered the first-line treatment. It is highly effective, but its association with fetal malformations when taken in pregnancy limits its use in young women.
All anti-epileptic drugs (including the above) can be used in cases of partial seizures.
Definitions vary, but currently it is defined as one continuous, unremitting seizure lasting longer than five minutes, or recurrent seizures without regaining consciousness between seizures for greater than five minutes. Previous definitions used a 30-minute time limit.
NCSE is believed to be under-diagnosed.
There have been early and consistent strategies for measurement to better understand vertiginous epilepsy including caloric reflex test, posture and gait, or rotational experimentation.
In Japan, Kaga et al prepared a longitudinal study of rotation tests comparing congenital deafness and children with delayed acquisition of motor system skills. They were able to demonstrate the development of post-rotation nystagmus response from the frequency of beat and duration period from birth to six years to compare to adult values. Overall, the study demonstrated that some infants from the deaf population had impaired vestibular responses related to head control and walking age. A side interpretation included the evaluation of the vestibular system in reference to matching data with age.
Research in this area of medicine is limited due to its lacking need for urgent attention. But, the American Hearing Research Foundation (AHRF) conducts studies in which they hope to make new discoveries to help advance treatment of the disease and possibly one day prevent vertiginous seizures altogether.
A wide array of phenomena may resemble epileptic seizures, which may lead to people who do not have epilepsy being misdiagnosed. Indeed, a significant percentage of people initially diagnosed with epilepsy will later have this revised. In one study, the majority of children referred to a secondary clinic with "fits, faints and funny turns" did not have epilepsy, with syncope (fainting) as the most common alternative. In another study, 39% of children referred to a tertiary epilepsy centre did not have epilepsy, with staring episodes in mentally challenged children as the most common alternative. In adults, the figures are similar, with one study reporting a 26% rate of misdiagnosis.
Differentiation of a non-epileptic attack from an epileptic seizure includes the patient keeping their eyes closed and rarely causing themselves harm (both more common in non-epileptic attacks)