Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Transvaginal ultrasonography can be used to determine antral follicle count (AFC). This is an easy-to-perform and noninvasive method (but there may be some discomfort). Several studies show this test to be more accurate than basal FSH testing for older women (< 44 years of age) in predicting IVF outcome. This method of determining ovarian reserve is recommended by Dr. Sherman J. Silber, author and medical director of the Infertility Center of St. Louis.
AFC and Median Fertile Years Remaining
Note, the above table from Silber's book may be in error as it has no basis in any scientific study, and contradicts data from Broekmans, et al. 2004 study. The above table closely matches Broekmans' data only if interpreted as the total AFC of both ovaries. Only antral follicles that were 2–10 mm in size were counted in Broekmans' study.
Age and AFC and Age of Loss of Natural Fertility (See Broekmans, et al. [2004])
AFC and FSH Stimulation Recommendations for Cycles Using Assisted Reproduction Technology
Elevated serum follicle stimulating hormone (FSH) level measured on day three of the menstrual cycle. (First day of period flow is counted as day one. Spotting is not considered start of period.) If a lower value occurs from later testing, the highest value is considered the most predictive. FSH assays can differ somewhat so reference ranges as to what is normal, premenopausal or menopausal should be based on ranges provided by the laboratory doing the testing. Estradiol (E2) should also be measured as women who ovulate early may have elevated E2 levels above 80 pg/mL (due to early follicle recruitment, possibly due to a low serum inhibin B level) which will mask an elevated FSH level and give a false negative result.
High FSH strongly predicts poor IVF response in older women, less so in younger women. One study showed an elevated basal day-three FSH is correlated with diminished ovarian reserve in women aged over 35 years and is associated with poor pregnancy rates after treatment of ovulation induction(6% versus 42%).
The rates for spontaneous pregnancy in older women with elevated FSH levels have not been studied very well and the spontaneous pregnancy success rate, while low, may be underestimated due to non reporting bias, as most infertility clinics will not accept women over the age of forty with FSH levels in the premenopausal range or higher.
A woman can have a normal day-three FSH level yet still respond poorly to ovarian stimulation and hence can be considered to have poor reserve. Thus, another FSH-based test is often used to detect poor ovarian reserve: the clomid challenge test, also known as CCCT(clomiphene citrate challenge test).
Between 5 and 10 percent of women with POF may become pregnant. Currently no fertility treatment has officially been found to effectively increase fertility in women with POF, and the use of donor eggs with in-vitro fertilization (IVF) and adoption are popular as a means of achieving parenthood for women with POF. Some women with POF choose to live child-free. (See impaired ovarian reserve for a summary of recent randomized clinical trials and treatment methods.)
Currently New York fertility researchers are investigating the use of a mild hormone called dehydroepiandrosterone (DHEA) in women with POF to increase spontaneous pregnancy rates. Published results from studies conducted on DHEA have indicated that DHEA may increase spontaneously conceived pregnancies, decrease spontaneous miscarriage rates and improve IVF success rates in women with POF.
Additionally, over the last five years a Greek research team has successfully implemented the use of dehydroepiandrosterone (DHEA) for the fertility treatment of women suffering with POF.The majority of the patients were referred for donor eggs or surrogacy, however after a few months of DHEA administration, some succeeded in getting pregnant through IVF, IUI, IUTPI or natural conception. Many babies have been born after treatment with DHEA.
Ovarian tissue cryopreservation can be performed on prepubertal girls at risk for premature ovarian failure, and this procedure is as feasible and safe as comparable operative procedures in children.
Serum follicle-stimulating hormone (FSH) measurement alone can be used to diagnose the disease. Two FSH measurements with one-month interval have been a common practice. The anterior pituitary secretes FSH and LH at high levels due to the dysfunction of the ovaries and consequent low estrogen levels. Typical FSH in POF patients is over 40 mlU/ml (post-menopausal range).
Diagnosis of infertility begins with a medical history and physical exam. The healthcare provider may order tests, including the following:
- Lab tests
- hormone testing, to measure levels of female hormones at certain times during a menstrual cycle
- day 2 or 3 measure of FSH and estrogen, to assess ovarian reserve
- measurements of thyroid function (a thyroid stimulating hormone (TSH) level of between 1 and 2 is considered optimal for conception)
- measurement of progesterone in the second half of the cycle to help confirm ovulation
- Anti-Müllerian hormone to estimate ovarian reserve.
- Examination and imaging
- an endometrial biopsy, to verify ovulation and inspect the lining of the uterus
- laparoscopy, which allows the provider to inspect the pelvic organs
- fertiloscopy, a relatively new surgical technique used for early diagnosis (and immediate treatment)
- Pap smear, to check for signs of infection
- pelvic exam, to look for abnormalities or infection
- a postcoital test, which is done soon after intercourse to check for problems with sperm surviving in cervical mucous (not commonly used now because of test unreliability)
- Hysterosalpingography or sonosalpingography, to check for tube patency
- Sonohysterography to check for uterine abnormalities.
There are genetic testing techniques under development to detect any mutation in genes associated with female infertility.
Initial diagnosis and treatment of infertility is usually made by obstetrician/gynecologists or women's health nurse practitioners. If initial treatments are unsuccessful, referral is usually made to physicians who are fellowship trained as reproductive endocrinologists. Reproductive endocrinologists are usually obstetrician/gynecologists with advanced training in reproductive endocrinology and infertility (in North America). These physicians treat reproductive disorders affecting not only women but also men, children, and teens.
Usually reproductive endocrinology & infertility medical practices do not see women for general maternity care. The practice is primarily focused on helping their women to conceive and to correct any issues related to recurring pregnancy loss.
Symptoms-based methods of fertility awareness may be used to detect ovulation or to determine that cycles are anovulatory. Charting of the menstrual cycle may be done by hand, or with the aid of various fertility monitors. Records of one of the primary fertility awareness signs—basal body temperature—can detect ovulation by identifying the shift in temperature which takes place after ovulation. It is said to be the most reliable way of confirming whether ovulation has occurred.
Women may also use ovulation predictor kits (OPKs) which detect the increase in luteinizing hormone (LH) levels that usually indicates imminent ovulation. For some women, these devices do not detect the LH surge, or high levels of LH are a poor predictor of ovulation; this is particularly common in women with PCOS. In such cases, OPKs and those fertility monitors which are based on LH may show false results, with an increased number of false positives or false negatives. Dr Freundl from the University of Heidelberg suggests that tests which use LH as a reference often lack sensitivity and specificity.
Low testosterone can be identified through a simple blood test performed by a laboratory, ordered by a health care provider. Blood for the test must be taken in the morning hours, when levels are highest, as levels can drop by as much as 13% during the day and all normal reference ranges are based on morning levels. However, low testosterone in the absence of any symptoms does not clearly need to be treated.
Normal total testosterone levels depend on the man's age but generally range from 240–950 ng/dL (nanograms per deciliter) or 8.3-32.9 nmol/L (nanomoles per liter). Some men with normal total testosterone have low free or bioavailable testosterone levels which could still account for their symptoms. Men with low serum testosterone levels should have other hormones checked, particularly luteinizing hormone to help determine why their testosterone levels are low and help choose the most appropriate treatment (most notably, testosterone is usually not appropriate for secondary or tertiary forms of male hypogonadism, in which the LH levels are usually reduced).
Treatment is often prescribed for total testosterone levels below 230 ng/dL with symptoms. If the serum total testosterone level is between 230 and 350 ng/dL, free or bioavailable testosterone should be checked as they are frequently low when the total is marginal.
The standard range given is based off widely varying ages and, given that testosterone levels naturally decrease as humans age, age-group specific averages should be taken into consideration when discussing treatment between doctor and patient. In men, testosterone falls approximately 1 to 3 percent each year.
- Blood testing
A position statement by the Endocrine Society expressed dissatisfaction with most assays for total, free, and bioavailable testosterone. In particular, research has questioned the validity of commonly administered assays of free testosterone by radioimmunoassay. The free androgen index, essentially a calculation based on total testosterone and sex hormone-binding globulin levels, has been found to be the worst predictor of free testosterone levels and should not be used. Measurement by equilibrium dialysis or mass spectroscopy is generally required for accurately results, particularly for free testosterone which is present normal in such small concentrations.
Testing serum LH and FSH levels are often used to assess hypogonadism in women, particularly when menopause is believed to be happening. These levels change during a woman's normal menstrual cycle, so the history of having ceased menstruation coupled with high levels aids the diagnosis of being menopausal. Commonly, the post-menopausal woman is not called hypogonadal if she is of typical menopausal age. Contrast with a young woman or teen, who would have hypogonadism rather than menopause. This is because hypogonadism is an abnormality, whereas menopause is a normal change in hormone levels. In any case, the LH and FSH levels will rise in cases of primary hypogonadism or menopause, while they will be low in women with secondary or tertiary hypogonadism.
Hypogonadism is often discovered during evaluation of delayed puberty, but ordinary delay, which eventually results in normal pubertal development, wherein reproductive function is termed constitutional delay. It may be discovered during an infertility evaluation in either men or women.
Perimenopause is a natural stage of life. It is not a disease or a disorder. Therefore, it does not automatically require any kind of medical treatment. However, in those cases where the physical, mental, and emotional effects of perimenopause are strong enough that they significantly disrupt the life of the woman experiencing them, palliative medical therapy may sometimes be appropriate.
Diagnosis is largely achieved by obtaining a complete medical history followed by physical exam and ultrasound. If need be, laboratory tests or hysteroscopy may be used. The following are a list of diagnostic procedures that medical professionals may use to identify the cause of the abnormal uterine bleeding.
- Pelvic and rectal examination to ensure that bleeding is not from lower reproductive tract (i.e. vagina, cervix) or rectum
- Pap smear to rule out cervical neoplasia
- Pelvic ultrasound scan is the first line diagnostic tool for identifying structural abnormalities.
- Endometrial biopsy to exclude endometrial cancer or atypical hyperplasia
- Hysteroscopy
- TSH and T4 dosage to rule out hypothyroidism
The European Society of Human Reproduction and Embryology (ESHRE) notes that the aim of ovulation induction should be mono-ovulation and not over-stimulation of the ovaries . The risks associated with multiple pregnancy are much higher than singleton pregnancy; incidences of perinatal death are seven times higher in triplet births and five times higher in twin births than the risks associated with a singleton pregnancy. It is therefore important to adapt the treatment to each individual patient.
Women with polycystic ovary syndrome may be particularly at risk. Multiple pregnancy occurs in approximately 15-20% of cases following cycles induced with gonadotrophins such as hMG and FSH induced ovulations.
During ovulation induction, it is recommended to start at a low dose and monitor the ovarian response with vaginal ultrasound, including discernment of the number of developing follicles. A cycle with supernumerary follicles is usually defined as one where there are more than two follicles >16 mm in diameter. It is generally recommended to have such cycles cancelled because of the risk of multiple pregnancy. In cancelled cycles, the woman or couple should be warned of the risks in case of supernumerary follicles, and should avoid sexual intercourse or use contraception until the next menstruation. Induction of final maturation (such as done with hCG) may need to be withheld because of increased risk of ovarian hyperstimulation syndrome(OHSS). The starting dose of the inducing drug should be reduced in the next cycle.
Alternatives to cancelling a cycle are mainly:
- Aspiration of supernumerary follicles until one or two remain.
- Converting the protocol to IVF treatment with embryo transfer of up to two embryos only.
- Selective fetal reduction. This alternative confers a high risk of complications.
- Proceeding with any multiple pregnancy without fetal reduction, with the ensuing risk of complications. This alternative is not recommended.
The term "postmenopausal" describes women who have not experienced any menstrual flow for a minimum of 12 months, assuming that they have a uterus and are not pregnant or lactating. In women without a uterus, menopause or postmenopause can be identified by a blood test showing a very high FSH level. Thus postmenopause is the time in a woman's life that takes place after her last period or, more accurately, after the point when her ovaries become inactive.
The reason for this delay in declaring postmenopause is because periods are usually erratic at this time of life. Therefore, a reasonably long stretch of time is necessary to be sure that the cycling has ceased. At this point a woman is considered infertile; however, the possibility of becoming pregnant has usually been very low (but not quite zero) for a number of years before this point is reached.
A woman's reproductive hormone levels continue to drop and fluctuate for some time into post-menopause, so hormone withdrawal effects such as hot flashes may take several years to disappear.
A period-like flow during postmenopause, even spotting, may be a sign of endometrial cancer.
Acquired female infertility may be prevented through identified interventions:
- "Maintaining a healthy lifestyle." Excessive exercise, consumption of caffeine and alcohol, and smoking have all been associated with decreased fertility. Eating a well-balanced, nutritious diet, with plenty of fresh fruits and vegetables, and maintaining a normal weight, on the other hand, have been associated with better fertility prospects.
- "Treating or preventing existing diseases." Identifying and controlling chronic diseases such as diabetes and hypothyroidism increases fertility prospects. Lifelong practice of safer sex reduces the likelihood that sexually transmitted diseases will impair fertility; obtaining prompt treatment for sexually transmitted diseases reduces the likelihood that such infections will do significant damage. Regular physical examinations (including pap smears) help detect early signs of infections or abnormalities.
- "Not delaying parenthood." Fertility does not ultimately cease before menopause, but it starts declining after age 27 and drops at a somewhat greater rate after age 35. Women whose biological mothers had unusual or abnormal issues related to conceiving may be at particular risk for some conditions, such as premature menopause, that can be mitigated by not delaying parenthood.
- "Egg freezing." A woman can freeze her eggs preserve her fertility. By using egg freezing while in the peak reproductive years, a woman's oocytes are cryogenically frozen and ready for her use later in life, reducing her chances of female infertility.
The diagnosis is often one of exclusion found during the workup of delayed puberty.
A paper published in 2012 by Prof. Jacques Young highlights a typical example of the diagnostic work up involved in a suspected case of KS/CHH.
One of the biggest problems in the diagnosis of KS and other forms of CHH is the ability to distinguish between a normal constitutional delay of puberty and KS or CHH.
The main biochemical parameters in men are low serum testosterone and low levels of the gonadotropins LH and FSH, and in women low serum oestrogen and low levels of LH and FSH.
For both males and females with constitutional delay of puberty, endogenous puberty will eventually commence without treatment. However a delay in treatment in a case of KS/HH will delay the physical development of the patient and can cause severe psychological damage. The "wait and see" approach applied to "late bloomers" is probably counterproductive to the needs of the patient whereas a step-by-step approach with hormone replacement therapy used with slowly increasing doses can be used as a diagnostic tool.
Post natal diagnosis of KS / CHH before the age of 6 months is sometimes possible. The normal post natal hormonal surge of gonadotropins along with testosterone or oestrogen is absent in babies with KS / CHH. This lack of detectable hormones in the blood can be used as a diagnostic indicator, especially in male infants.
Normally testicular enlargement is the key sign for the onset of puberty in boys however the use of nighttime LH sampling can help predict the onset of puberty.
In females diagnosis is sometimes further delayed as other causes of amenorrhoea normally have to be investigated first before a case of KS/CHH is considered. KS/CHH can still occur in females in cases when menstruation has begun but stopped after one or two menstrual bleeds. A study of GnRH deficient women in 2011 showed that 10% had experienced one or two bleeds before the onset of amenorrhoea.
In males, treatment with age-appropriate levels of testosterone can be used to distinguish between a case of KS/CHH from a case of delayed puberty. If just delayed the testosterone can "kick-start" endogenous puberty, as demonstrated by testicular enlargement, whereas in the case of KS/CHH there will be no testicular enlargement while on testosterone therapy alone. If no puberty is apparent, especially no testicular development, then a review by a reproductive endocrinologist may be appropriate. Dr Richard Quinton, a leading UK expert on KS/CHH, suggests that if puberty is not apparent by the age of 16 then the patient should be referred for endocrinological review.
A full endocrine workup will be required to measure the levels of the other pituitary hormones, especially prolactin, to check that the pituitary gland is working correctly. There can be other general health issues such as being overweight or having an underlying chronic or acute illness which could cause a delay of puberty. This makes it essential for a patient to get a full endocrine review to distinguish between a case of KS/CHH and another cause for the pubertal delay.
Bone age can be assessed using hand and wrist X-rays. If the bone age is significantly lower than the chronological age of the patient, this could suggest delayed puberty unless there is another underlying reason for the discrepancy.
A karyotype may be performed to rule out Klinefelter syndrome and Turner syndrome, although the hormones levels would also rule out both these relatively common reasons for hypogonadism.
A magnetic resonance imaging (MRI) scan can be used to determine whether the olfactory bulb is present and to check for any physical irregularities of the pituitary gland or hypothalamus.
A standard smell test can be used to check for anosmia, but it must be remembered that even in total anosmia various substances (such as menthol and alcohol) can still be detected by direct stimulation of the trigeminal nerve.
Genetic screening can be carried out, but in light of the unknown genes involved in the majority of KS and CHH cases, a negative result will not rule out a possible diagnosis.
A review paper published in 2014 highlighted the need for doctors to be aware of the possible diagnosis of KS / HH if pubertal delay is found alongside associated "red flag" symptoms. The symptoms listed in the paper were split into two categories; reproductive symptoms associated with the lack of mini puberty seen between birth and six months of age and non-reproductive symptoms which are associated with specific forms of HH. As with other review papers the authors also warned against the "wait and see" approach when puberty appears to be delayed.
In order to establish whether the lump is a cyst or not, several imaging tests may be performed. Mammography is usually the first imaging test to be ordered when unusual breast changes have been detected during a physical examination. A diagnostic mammography consists in a series of x-rays that provide clear images of specific areas of the breast.
Ultrasounds and MRIs are commonly performed in conjunction with mammographies as they produce clear images of the breast and clearly distinguish between fluid-filled breast cysts and solid masses. The ultrasound and MRI exams can better evaluate dense tissue of the breast; hence it is often undergone by young patients, under 30 years old.
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
Diagnosis is mostly done based on symptoms after exclusion of breast cancer. Nipple fluid aspiration can be used to classify cyst type (and to some extent improve breast cancer risk prediction) but it is rarely used in practice. Biopsy or fine needle aspiration are rarely warranted.
Fibrocystic breast disease is primarily diagnosed based on the symptoms, clinical breast exam and on a physical exam. During this examination, the doctor checks for unusual areas in the breasts, both visually and manually. Also, the lymph nodes in the axilla area and lower neck are examined. A complete and accurate medical history is also helpful in diagnosing this condition. If the patient's medical history and physical exam findings are consistent with normal breast changes, no additional tests are considered but otherwise the patient will be asked to return a few weeks later for reassessment. Women may detect lumps in their breasts during self-examination as well.
Resistant ovary syndrome, previously known as Savage syndrome, is a cause of ovarian failure that can lead to secondary amenorrhea. Resistant ovaries result from a functional disturbance of the gonadotropin receptors in the ovarian follicles. It may be a cause of primary or secondary amenorrhea and is resistant to exogenous gonadotropin stimulation.
Diagnosis of this condition requires that the patient has a normal 46,XX karyotype, normal secondary sexual characteristics, elevated plasma follicle-stimulating hormone and luteinizing hormone – in the menopausal range – and that normal, multiple follicles are seen on ovarian biopsy.
Spontaneous reversal of the receptor resistance may occur.
Where an underlying cause can be identified, treatment may be directed at this. Clearly heavy periods at menarche and menopause may settle spontaneously (the menarche being the start and menopause being the cessation of periods).
If the degree of bleeding is mild, all that may be sought by the woman is the reassurance that there is no sinister underlying cause. If anemia occurs due to bleeding then iron tablets may be used to help restore normal hemoglobin levels.
The condition is often treated with hormones, particularly as abnormal uterine bleeding commonly occurs in the early and late menstrual years when contraception is also sought. Usually, oral combined contraceptive or progesterone only pills may be taken for a few months, but for longer-term treatment the alternatives of injected Depo Provera or the more recent progesterone releasing IntraUterine System (IUS) may be used. Fibroids may respond to hormonal treatment, and if they do not, then surgical removal may be required.
Tranexamic acid tablets that may also reduce loss by up to 50%. This may be combined with hormonal medication previously mentioned.
Anti-inflammatory medication like NSAIDs may also be used. NSAIDs are the first-line medications in ovulatory menorrhagia, resulting in an average reduction of 20-46% in menstrual blood flow. For this purpose, NSAIDs are ingested for only 5 days of the menstrual cycle, limiting their most common adverse effect of dyspepsia.
A definitive treatment for menorrhagia is to perform hysterectomy (removal of the uterus). The risks of the procedure have been reduced with measures to reduce the risk of deep vein thrombosis after surgery, and the switch from the front abdominal to vaginal approach greatly minimizing the discomfort and recuperation time for the patient; however extensive fibroids may make the womb too large for removal by the vaginal approach. Small fibroids may be dealt with by local removal (myomectomy). A further surgical technique is endometrial ablation (destruction) by the use of applied heat (thermoablation).
In the UK the use of hysterectomy for menorrhagia has been almost halved between 1989 and 2003. This has a number of causes: better medical management, endometrial ablation and particularly the introduction of IUS which may be inserted in the community and avoid the need for specialist referral; in one study up to 64% of women cancelled surgery.
PMS is generally a stable diagnosis, with susceptible women experiencing the same symptoms at the same intensity near the end of each cycle for years. Treatment for specific symptoms is usually effective.
Even without treatment, symptoms tend to decrease in perimenopausal women. However, women who experience PMS or PMDD are more likely to have significant symptoms associated with menopause, such as hot flashes.
A widely recognised method of estimating the risk of malignant ovarian cancer based on initial workup is the "risk of malignancy index" (RMI). It is recommended that women with an RMI score over 200 should be referred to a centre with experience in ovarian cancer surgery.
The RMI is calculated as follows:
There are two methods to determine the ultrasound score and menopausal score, with the resultant RMI being called RMI 1 and RMI 2, respectively, depending on what method is used:
An RMI 2 of over 200 has been estimated to have a sensitivity of 74 to 80%, a specificity of 89 to 92% and a positive predictive value of around 80% of ovarian cancer. RMI 2 is regarded as more sensitive than RMI 1.
The U.S. Preventive Services Task Force (USPSTF) recommend that all women 65 years of age or older be screened by bone densitometry. Additionally they recommend screening women with increased risk factors that puts them at risk equivalent to a 65‑year‑old. There is insufficient evidence to make recommendations about the intervals for repeated screening and the appropriate age to stop screening. In men the harm versus benefit of screening for osteoporosis is unknown. Prescrire states that the need to test for osteoporosis in those who have not had a previous bone fracture is unclear. The International Society for Clinical Densitometry, however, suggest BMD testing for men 70 or older, or those who are indicated for risk equal to that of a 70‑year‑old. A number of tools exist to help determine who is reasonable to test.
Cysts associated with hypothyroidism or other endocrine problems are managed by treating the underlying condition.
About 95% of ovarian cysts are benign, not cancerous.
Functional cysts and hemorrhagic ovarian cysts usually resolve spontaneously. However, the bigger an ovarian cyst is, the less likely it is to disappear on its own. Treatment may be required if cysts persist over several months, grow, or cause increasing pain.
Cysts that persist beyond two or three menstrual cycles, or occur in post-menopausal women, may indicate more serious disease and should be investigated through ultrasonography and laparoscopy, especially in cases where family members have had ovarian cancer. Such cysts may require surgical biopsy. Additionally, a blood test may be taken before surgery to check for elevated CA-125, a tumour marker, which is often found in increased levels in ovarian cancer, although it can also be elevated by other conditions resulting in a large number of false positives.
The cystic nature of a breast lump can be confirmed by ultrasound examination, aspiration (removal of contents with needle), or mammogram. Ultrasound can also show if the cyst contains solid nodules, a sign that the lesion may be pre-cancerous or cancerous. Examination by a cytopathologist of the fluid aspirated from the cyst may also help with this diagnosis. In particular, it should be sent to a laboratory for testing if it is blood-stained.
Commonly, cysts are detected with the help of mammograms. However, the medical history and physical examination also play an important role in establishing an accurate diagnosis. During these tests, the doctor will try to find out as much information as possible regarding the symptoms the patient has experienced, their intensity and duration and the physical examination is performed regularly to check for other abnormalities that may exist within the breast.
As mentioned above, cysts are often undetectable at touch. Therefore, a mammogram can provide valuable and clear images of the breast tissue. Generally, if there is any abnormality within the breast tissue, it will be shown on the mammogram. There are two types of mammograms available. One of them is primarily used in screening, and are ordered for patients who do not show any symptoms and these are called screening mammograms. Diagnostic mammograms are used on patients who developed certain symptoms of a breast condition or in patients whose screening mammograms showed abnormalities.
Patients suspected of breast cysts will normally be given a diagnosing mammogram, although they are not suspected of cancer. This type of mammogram provides the doctor with the possibility of performing a breast ultrasound at the same time and this is the reason why they are often preferred over the screening mammograms. Breast ultrasound is considered the best option when diagnosing breast cysts because it is 95 to 100% accurate, it provides a clear image on the cyst's appearance (simple or complex) and it may also distinguish between solid lumps and fluid-filled cysts, which a mammogram cannot do. Breast ultrasounds are performed with the help of a handheld medical instrument which is placed on the skin, after a special type of fluid has been applied on it. The instruments picks up the echo resulted from the sound waves it sends to the breast. These echoes are transmitted to a computer which translates it into a picture.
Breast cysts may remain stable for many years or may resolve spontaneously. Most simple cysts are benign and do not require any treatment or further diagnostic workup. Some complex cysts may require further diagnostic measures such as fine needle aspiration or biopsy to exclude breast cancer however the overwhelming majority is of benign nature. Aspiration both diagnoses and removes cysts at the same time. That is, cysts will usually resolve on their own after the fluid is drained. Otherwise, if the lump is not a cyst, the fluid aspirated may contain blood or there may not be fluid at all. Whereas in the first case, the fluid is sent to the laboratory for further examination, the latter circumstance is a sign that the breast lump is solid. This type of tumor needs to be biopsied in order to determine whether it is malignant or benign.
There are no laboratory tests or unique physical findings to verify the diagnosis of PMS. The three key features are:
- The woman's chief complaint is one or more of the emotional symptoms associated with PMS (most typically irritability, tension, or unhappiness). The woman does not have PMS if she only has physical symptoms, such as cramps or bloating.
- Symptoms appear predictably during the luteal (premenstrual) phase, reduce or disappear predictably shortly before or during menstruation, and remain absent during the follicular (preovulatory) phase.
- The symptoms must be severe enough to interfere with the woman's everyday life.
Mild PMS is common, and more severe symptoms would qualify as PMDD. PMS is not listed in the DSM-IV, unlike PMDD. To establish a pattern and determine if it is PMDD, a woman's physician may ask her to keep a prospective record of her symptoms on a calendar for at least two menstrual cycles. This will help to establish if the symptoms are, indeed, limited to the premenstrual time, predictably recurring, and disruptive to normal functioning. A number of standardized instruments have been developed to describe PMS, including the "Calendar of Premenstrual syndrome Experiences (COPE)", the "Prospective Record of the Impact and Severity of Menstruation (PRISM)", and the "Visual Analogue Scales (VAS)".
Other conditions that may better explain symptoms must be excluded. A number of medical conditions are subject to exacerbation at menstruation, a process called "menstrual magnification." These conditions may lead the woman to believe that she has PMS, when the underlying disorder may be some other problem, such as anemia, hypothyroidism, eating disorders and substance abuse. A key feature is that these conditions may also be present outside of the luteal phase. Conditions that can be magnified perimenstrually include depression or other affective disorders, migraine, seizure disorders, fatigue, irritable bowel syndrome, asthma, and allergies. Problems with other aspects of the female reproductive system must be excluded, including dysmenorrhea (pain during the menstrual period, rather than before it), endometriosis, perimenopause, and adverse effects produced by oral contraceptive pills.
The National Institute of Mental Health research definition compares the intensity of symptoms from cycle days 5 to 10 to the six-day interval before the onset of the menstrual period. To qualify as PMS, symptom intensity must increase at least 30% in the six days before menstruation. Additionally, this pattern must be documented for at least two consecutive cycles.