Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because the risk of meningococcal disease is increased among USA's military recruits, all military recruits routinely receive primary immunization against the disease.
Meningitis A,C,Y and W-135 vaccines can be used for large-scale vaccination programs when an outbreak of meningococcal disease occurs in Africa and other regions of the world. Whenever sporadic or cluster cases or outbreaks of meningococcal disease occur in the US, chemoprophylaxis is the principal means of preventing secondary cases in household and other close contacts of individuals with invasive disease. Meningitis A,C,Y and W-135 vaccines rarely may be used as an adjunct to chemoprophylaxis,1 but only in situations where there is an ongoing risk of exposure (e.g., when cluster cases or outbreaks occur) and when a serogroup contained in the vaccine is involved.
It is important that clinicians promptly report all cases of suspected or confirmed meningococcal disease to local public health authorities and that the serogroup of the meningococcal strain involved be identified. The effectiveness of mass vaccination programs depends on early and accurate recognition of outbreaks. When a suspected outbreak of meningococcal disease occurs, public health authorities will then determine whether mass vaccinations (with or without mass chemoprophylaxis) is indicated and delineate the target population to be vaccinated based on risk assessment.
A 2013 review concluded moderate-quality evidence exists to support use of the procalcitonin level as a method to distinguish sepsis from non-infectious causes of SIRS. The same review found the sensitivity of the test to be 77% and the specificity to be 79%. The authors suggested that procalcitonin may serve as a helpful diagnostic marker for sepsis, but cautioned that its level alone cannot definitively make the diagnosis. A 2012 systematic review found that soluble urokinase-type plasminogen activator receptor (SuPAR) is a nonspecific marker of inflammation and does not accurately diagnose sepsis. This same review concluded, however, that SuPAR has prognostic value, as higher SuPAR levels are associated with an increased rate of death in those with sepsis.
Approximately 20–35% of people with severe sepsis and 30–70% of people with septic shock die. Lactate is a useful method of determining prognosis with those who have a level greater than 4 mmol/L having a mortality of 40% and those with a level of less than 2 mmol/L have a mortality of less than 15%.
There are a number of prognostic stratification systems such as APACHE II and Mortality in Emergency Department Sepsis. APACHE II factors in the person's age, underlying condition, and various physiologic variables to yield estimates of the risk of dying of severe sepsis. Of the individual covariates, the severity of underlying disease most strongly influences the risk of death. Septic shock is also a strong predictor of short- and long-term mortality. Case-fatality rates are similar for culture-positive and culture-negative severe sepsis. The Mortality in Emergency Department Sepsis (MEDS) score is simpler and useful in the emergency department environment.
Some people may experience severe long-term cognitive decline following an episode of severe sepsis, but the absence of baseline neuropsychological data in most people with sepsis makes the incidence of this difficult to quantify or to study.
Initial diagnosis may be via symptoms, but is usually confirmed via an antigen and antibody test. A PCR-based test is also available. Although any of these tests can confirm psittacosis, false negatives are possible and so a combination of clinical and lab tests is recommended before giving the bird a clean bill of health. It may die within three weeks.
Meningitis can be diagnosed after death has occurred. The findings from a post mortem are usually a widespread inflammation of the pia mater and arachnoid layers of the meninges. Neutrophil granulocytes tend to have migrated to the cerebrospinal fluid and the base of the brain, along with cranial nerves and the spinal cord, may be surrounded with pus – as may the meningeal vessels.
Blood analysis shows leukopenia, thrombocytopenia and moderately elevated liver enzymes. Differential diagnosis must be made with typhus, typhoid and atypical pneumonia by Mycoplasma, Legionella or Q fever. Exposure history is paramount to diagnosis.
Diagnosis involves microbiological cultures from respiratory secretions of patients or serologically with a fourfold or greater increase in antibody titers against "C. psittaci" in blood samples combined with the probable course of the disease. Typical inclusions called "Leventhal-Cole-Lillie bodies" can be seen within macrophages in BAL (bronchoalveolar lavage) fluid. Culture of "C. psittaci" is hazardous and should only be carried out in biosafety laboratories.
A lumbar puncture is done by positioning the person, usually lying on the side, applying local anesthetic, and inserting a needle into the dural sac (a sac around the spinal cord) to collect cerebrospinal fluid (CSF). When this has been achieved, the "opening pressure" of the CSF is measured using a manometer. The pressure is normally between 6 and 18 cm water (cmHO); in bacterial meningitis the pressure is usually elevated. In cryptococcal meningitis, intracranial pressure is markedly elevated. The initial appearance of the fluid may prove an indication of the nature of the infection: cloudy CSF indicates higher levels of protein, white and red blood cells and/or bacteria, and therefore may suggest bacterial meningitis.
The CSF sample is examined for presence and types of white blood cells, red blood cells, protein content and glucose level. Gram staining of the sample may demonstrate bacteria in bacterial meningitis, but absence of bacteria does not exclude bacterial meningitis as they are only seen in 60% of cases; this figure is reduced by a further 20% if antibiotics were administered before the sample was taken. Gram staining is also less reliable in particular infections such as listeriosis. Microbiological culture of the sample is more sensitive (it identifies the organism in 70–85% of cases) but results can take up to 48 hours to become available. The type of white blood cell predominantly present (see table) indicates whether meningitis is bacterial (usually neutrophil-predominant) or viral (usually lymphocyte-predominant), although at the beginning of the disease this is not always a reliable indicator. Less commonly, eosinophils predominate, suggesting parasitic or fungal etiology, among others.
The concentration of glucose in CSF is normally above 40% of that in blood. In bacterial meningitis it is typically lower; the CSF glucose level is therefore divided by the blood glucose (CSF glucose to serum glucose ratio). A ratio ≤0.4 is indicative of bacterial meningitis; in the newborn, glucose levels in CSF are normally higher, and a ratio below 0.6 (60%) is therefore considered abnormal. High levels of lactate in CSF indicate a higher likelihood of bacterial meningitis, as does a higher white blood cell count. If lactate levels are less than 35 mg/dl and the person has not previously received antibiotics then this may rule out bacterial meningitis.
Various other specialized tests may be used to distinguish between different types of meningitis. A latex agglutination test may be positive in meningitis caused by "Streptococcus pneumoniae", "Neisseria meningitidis", "Haemophilus influenzae", "Escherichia coli" and "group B streptococci"; its routine use is not encouraged as it rarely leads to changes in treatment, but it may be used if other tests are not diagnostic. Similarly, the limulus lysate test may be positive in meningitis caused by Gram-negative bacteria, but it is of limited use unless other tests have been unhelpful. Polymerase chain reaction (PCR) is a technique used to amplify small traces of bacterial DNA in order to detect the presence of bacterial or viral DNA in cerebrospinal fluid; it is a highly sensitive and specific test since only trace amounts of the infecting agent's DNA is required. It may identify bacteria in bacterial meningitis and may assist in distinguishing the various causes of viral meningitis (enterovirus, herpes simplex virus 2 and mumps in those not vaccinated for this). Serology (identification of antibodies to viruses) may be useful in viral meningitis. If tuberculous meningitis is suspected, the sample is processed for Ziehl-Neelsen stain, which has a low sensitivity, and tuberculosis culture, which takes a long time to process; PCR is being used increasingly. Diagnosis of cryptococcal meningitis can be made at low cost using an India ink stain of the CSF; however, testing for cryptococcal antigen in blood or CSF is more sensitive, particularly in people with AIDS.
A diagnostic and therapeutic difficulty is "partially treated meningitis", where there are meningitis symptoms after receiving antibiotics (such as for presumptive sinusitis). When this happens, CSF findings may resemble those of viral meningitis, but antibiotic treatment may need to be continued until there is definitive positive evidence of a viral cause (e.g. a positive enterovirus PCR).
Providing basic sanitation and safe drinking water and food is the key for controlling the disease. In developed countries, enteric fever rates decreased in the past when treatment of municipal water was introduced, human feces were excluded from food production, and pasteurization of dairy products began. In addition, children and adults should be carefully educated about personal hygiene. This would include careful handwashing after defecation and sexual contact, before preparing or eating food, and especially the sanitary disposal of feces. Food handlers should be educated in personal hygiene prior to handling food or utensils and equipment. Infected individuals should be advised to avoid food preparation. Sexually active people should be educated about the risks of sexual practices that permit fecal-oral contact.
Those who travel to countries with poor sanitation should receive a live attenuated typhoid vaccine—Ty21a (Vivotif), which, in addition to the protection against typhoid fever, and may provide some protection against paratyphoid fever caused by the "S. enterica" serotypes A and B. In particular, a reanalysis of data from a trial conducted in Chile showed the Ty21a vaccine was 49% effective (95% CI: 8–73%) in preventing paratyphoid fever caused by the serotype B. Evidence from a study of international travelers in Israel also indicates the vaccine may prevent a fraction of infections by the serotype A, although no trial confirms this. This cross-protection by a typhoid vaccine is most likely due to O antigens shared between different "S. enterica" serotypes.
Exclusion from work and social activities should be considered for symptomatic, and asymptomatic, people who are food handlers, healthcare/daycare staff who are involved in patient care and/or child care, children attending unsanitary daycare centers, and older children who are unable to implement good standards of personal hygiene. The exclusion applies until two consecutive stool specimens are taken from the infected patient and are reported negative.
It is suggested that splenectomized persons receive the following vaccinations, and ideally prior to planned splenectomy surgery:
- Pneumococcal polysaccharide vaccine (not before 2 years of age). Children may first need one or more boosters of pneumococcal conjugate vaccine if they did not complete the full childhood series.
- Haemophilus influenzae type b vaccine, especially if not received in childhood. For adults who have not been previously vaccinated, two doses given two months apart was advised in the new 2006 UK vaccination guidelines (in the UK may be given as a combined Hib/MenC vaccine).
- Meningococcal conjugate vaccine, especially if not received in adolescence. Previously vaccinated adults require a single booster and non-immunised adults advised, in UK since 2006, to have two doses given two months apart. Children too young for the conjugate vaccine should receive meningococcal polysaccharide vaccine in the interim.
- Influenza vaccine, every winter, to help prevent getting secondary bacterial infection.
Diagnosis is made by any blood, bone marrow or stool cultures and with the Widal test (demonstration of antibodies against "Salmonella" antigens O-somatic and H-flagellar). In epidemics and less wealthy countries, after excluding malaria, dysentery, or pneumonia, a therapeutic trial time with chloramphenicol is generally undertaken while awaiting the results of the Widal test and cultures of the blood and stool.
The Widal test is time-consuming, and prone to significant false positive results. The test may be also falsely negative in the early course of illness. However, unlike Typhidot test Widal test quantifies the specimen with titres.
Typhidot is a medical test consisting of a dot ELISA kit that detects IgM and IgG antibodies against the outer membrane protein (OMP) of the Salmonella typhi. The typhidot test becomes positive within 2–3 days of infection and separately identifies IgM and IgG antibodies. The test is based on the presence of specific IgM and IgG antibodies to a specific 50Kd OMP antigen, which is impregnated on nitrocellulose strips. IgM shows recent infection whereas IgG signifies remote infection. The most important limitation of this test is that it is not quantitative and result is only positive or negative.
The term 'enteric fever' is a collective term that refers to severe typhoid and paratyphoid.
In addition to the normal immunizations advised for the countries to be visited, Group A meningococcus should be included if visiting countries of particular risk (e.g. sub-saharan Africa). The non-conjugated Meningitis A and C vaccines usually used for this purpose give only 3 years coverage and provide less-effective long-term cover for Meningitis C than the conjugated form already mentioned.
Those lacking a functional spleen are at higher risk of contracting malaria, and succumbing to its effects. Travel to malarial areas will carry greater risks and is best avoided. Travellers should take the most appropriate anti-malarial prophylaxis medication and be extra vigilant over measures to prevent mosquito bites.
The pneumococcal vaccinations may not cover some of the other strains of pneumococcal bacteria present in other countries. Likewise their antibiotic resistance may also vary, requiring a different choice of stand-by antibiotic.
Routine vaccination against meningococcus is recommended by the Centers for Disease Control and Prevention for all 11- to 18-year-olds and people who have poor splenic function (who, for example, have had their spleen removed or who have sickle-cell disease which damages the spleen), or who have certain immune disorders, such as a complement deficiency.
As resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, and streptomycin is now common, these agents have not been used as first–line treatment of typhoid fever for almost 20 years. Typhoid resistant to these agents is known as multidrug-resistant typhoid (MDR typhoid).
Ciprofloxacin resistance is an increasing problem, especially in the Indian subcontinent and Southeast Asia. Many centres are shifting from using ciprofloxacin as the first line for treating suspected typhoid originating in South America, India, Pakistan, Bangladesh, Thailand, or Vietnam. For these people, the recommended first-line treatment is ceftriaxone. Also, azithromycin has been suggested to be better at treating typhoid in resistant populations than both fluoroquinolone drugs and ceftriaxone. Azithromycin significantly reduces relapse rates compared with ceftriaxone.
A separate problem exists with laboratory testing for reduced susceptibility to ciprofloxacin: current recommendations are that isolates should be tested simultaneously against ciprofloxacin (CIP) and against nalidixic acid (NAL), and that isolates that are sensitive to both CIP and NAL should be reported as "sensitive to ciprofloxacin", but that isolates testing sensitive to CIP but not to NAL should be reported as "reduced sensitivity to ciprofloxacin". However, an analysis of 271 isolates showed that around 18% of isolates with a reduced susceptibility to ciprofloxacin (MIC 0.125–1.0 mg/l) would not be picked up by this method. How this problem can be solved is not certain, because most laboratories around the world (including the West) are dependent on disk testing and cannot test for MICs.
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.
The diagnosis of dengue fever may be confirmed by microbiological laboratory testing. This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection (such as for NS1) or specific antibodies (serology). Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost. Detection of NS1 during the febrile phase of a primary infection may be greater than 90% sensitive however is only 60–80% in subsequent infections. All tests may be negative in the early stages of the disease. PCR and viral antigen detection are more accurate in the first seven days. In 2012 a PCR test was introduced that can run on equipment used to diagnose influenza; this is likely to improve access to PCR-based diagnosis.
These laboratory tests are only of diagnostic value during the acute phase of the illness with the exception of serology. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in reinfection. IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection, IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In testing for IgG and IgM antibodies there may be cross-reactivity with other flaviviruses which may result in a false positive after recent infections or vaccinations with yellow fever virus or Japanese encephalitis. The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.
Standard titer measles vaccine is recommended at 9 months of age in low-income countries where measles infection is endemic and often fatal. Many observational studies have shown that measles-vaccinated children have substantially lower mortality than can be explained by the prevention of measles-related deaths. Many of these observational studies were natural experiments, such as studies comparing the mortality before and after the introduction of measles vaccine and other studies where logistical factors rather than maternal choice determined whether a child was vaccinated or not.
These findings were later supported in randomized trials from 2003 to 2009 in Guinea-Bissau. An intervention group of children given standard titer measles vaccine at 4.5 and 9 month of age had a 30% reduction in all-cause mortality compared to the children in the control group, which were only vaccinated against measles at 9 month of age.
In a recent WHO-commissioned review based on four randomized trials and 18 observational studies, it was concluded that "There was consistent evidence of a beneficial effect of measles vaccine, although all observational studies were assessed as being at risk of bias and the GRADE rating was of low confidence. There was an apparent difference between the effect in girls and boys, with girls benefitting more from measles vaccination", and furthermore "estimated effects are in the region of a halving of mortality risk" and "if these effects are real then they are not fully explained by deaths that were established as due to measles". Based on the evidence, the WHO's Strategic Advisory Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
The World Health Organization's 2009 classification divides dengue fever into two groups: uncomplicated and severe. This replaces the 1997 WHO classification, which needed to be simplified as it had been found to be too restrictive, though the older classification is still widely used including by the World Health Organization's Regional Office for South-East Asia as of 2011. Severe dengue is defined as that associated with severe bleeding, severe organ dysfunction, or severe plasma leakage while all other cases are uncomplicated. The 1997 classification divided dengue into undifferentiated fever, dengue fever, and dengue hemorrhagic fever. Dengue hemorrhagic fever was subdivided further into grades I–IV. Grade I is the presence only of easy bruising or a positive tourniquet test in someone with fever, grade II is the presence of spontaneous bleeding into the skin and elsewhere, grade III is the clinical evidence of shock, and grade IV is shock so severe that blood pressure and pulse cannot be detected. Grades III and IV are referred to as "dengue shock syndrome".
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
The live attenuated BCG vaccine developed against tuberculosis has been shown to have strong beneficial effects on the ability to combat non-tuberculosis infections.
Several studies have suggested that BCG vaccination may reduce atopy, particularly when given early in life. Furthermore, in multiple observational studies BCG vaccination has been shown to provide beneficial effects on overall mortality. These observations encouraged randomised controlled trials to examine BCG vaccination's beneficial non-specific effects on overall health. Since BCG vaccination is recommended to be given at birth in countries that have a high incidence of tuberculosis it would have been unethical to randomize children into 'BCG' vs. 'no BCG' groups. However, many low-income countries delay BCG vaccination for low-birth-weight (LBW) infants; this offered the opportunity to directly test the effect of BCG on overall mortality.
In the first two randomised controlled trials receipt of BCG+OPV at birth vs. OPV only ('delayed BCG') was associated with strong reductions in neonatal mortality; these effects were seen as early as 3 days after vaccination. BCG protected against sepsis as well as respiratory infections.
Among BCG vaccinated children, those who develop a BCG scar or a positive skin test (TST) are less likely to develop sepsis and exhibit an overall reduction in child mortality of around 50%.
In a recent WHO-commissioned review based on five clinical trials and nine observational studies, it was concluded that "the results indicated a beneficial effect of BCG on overall mortality in the first 6–12 months of life. Relevant follow-up in some of the trials was short, and all of the observational studies were regarded as being at risk of bias, so the confidence in the findings was rated as very low according to the GRADE criteria and "There was a suggestion that BCG vaccination may be more beneficial the earlier it is given". Furthermore, "estimated effects are in the region of a halving of mortality risk" and "any effect of BCG vaccine on all-cause mortality is not likely to be attributable to any great extent to fewer deaths from tuberculosis (i.e. to a specific effect of BCG vaccine against tuberculosis)". Based on the evidence, the WHO's Strategic Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Antibiotics are effective. Prophylactic treatment consists in prevention of suppuration.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
Fulminant infection from meningococci bacteria in the bloodstream is a medical emergency and requires emergent treatment with adequate antibiotics. Benzylpenicillin was once the drug of choice with chloramphenicol as a good alternative in allergic patients. Ceftriaxone is an antibiotic commonly employed today. Hydrocortisone can sometimes reverse the adrenal insufficiency. Plastic surgery and tissue grafting are sometimes needed to treat tissue necrosis resulting from the infection.
Post-mortem findings include friable internal organs, abdominal effusion and evidence of sepsis in the joints, heart valves and brain.
Bacteria can usually be cultured from tissues collected at necropsy or identified by microscope examination.