Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Meningitis A,C,Y and W-135 vaccines can be used for large-scale vaccination programs when an outbreak of meningococcal disease occurs in Africa and other regions of the world. Whenever sporadic or cluster cases or outbreaks of meningococcal disease occur in the US, chemoprophylaxis is the principal means of preventing secondary cases in household and other close contacts of individuals with invasive disease. Meningitis A,C,Y and W-135 vaccines rarely may be used as an adjunct to chemoprophylaxis,1 but only in situations where there is an ongoing risk of exposure (e.g., when cluster cases or outbreaks occur) and when a serogroup contained in the vaccine is involved.
It is important that clinicians promptly report all cases of suspected or confirmed meningococcal disease to local public health authorities and that the serogroup of the meningococcal strain involved be identified. The effectiveness of mass vaccination programs depends on early and accurate recognition of outbreaks. When a suspected outbreak of meningococcal disease occurs, public health authorities will then determine whether mass vaccinations (with or without mass chemoprophylaxis) is indicated and delineate the target population to be vaccinated based on risk assessment.
Because the risk of meningococcal disease is increased among USA's military recruits, all military recruits routinely receive primary immunization against the disease.
Although the presentation of scarlet fever can be clinically diagnosed, further testing may be required to distinguish it from other illnesses. Also, history of a recent exposure to someone with strep throat can be useful. There are two methods used to confirm suspicion of scarlet fever rapid antigen detection test and throat culture.
The rapid antigen detection test is a very specific test but not very sensitive. This means that if the result is positive (indicating that the Group A Strep Antigen was detected and therefore confirming that the patient has a Group A Strep Pharyngitis) then it is appropriate to treat them with antibiotics. However, if the Rapid Antigen Detection Test is negative (indicating that they do not have Group A Strep Pharyngitis), then a throat culture is required to confirm since it could be a false negative result. The throat culture is the current gold standard for diagnosis.
Serologic testing looks for the antibodies that the body produces against the streptococcal infection including antistreptolysin-O and antideoxyribonuclease B. It takes the body 2–3 weeks to make these antibodies so this type of testing is not useful for diagnosing a current infection. However, it is useful when assessing a patient who may have one of the complications from a previous streptococcal infection.
Throat cultures done after antibiotic therapy can tell you if the infection has been removed. These throat swabs however are not indicated because up to 25% of properly treated individuals can continue to carry the streptococcal infection while asymptomatic.
Modified Jones criteria were first published in 1944 by T. Duckett Jones, MD. They have been periodically revised by the American Heart Association in collaboration with other groups. According to revised Jones criteria, the diagnosis of rheumatic fever can be made when two of the major criteria, or one major criterion plus two minor criteria, are present along with evidence of streptococcal infection: elevated or rising antistreptolysin O titre or DNAase. Exceptions are chorea and indolent carditis, each of which by itself can indicate rheumatic fever. An April 2013 review article in the "Indian Journal of Medical Research" stated that echocardiographic and Doppler (E & D) studies, despite some reservations about their utility, have identified a massive burden of rheumatic heart disease, which suggests the inadequacy of the 1992 Jones' criteria. E & D studies have identified subclinical carditis in patients with rheumatic fever, as well as in follow-ups of rheumatic heart disease patients who initially presented as having isolated cases of Sydenham's chorea. Signs of a preceding streptococcal infection include: recent scarlet fever, raised antistreptolysin O or other streptococcal antibody titre, or positive throat culture.
One method is long term use of antibiotics to prevent future group A streptococcal infections. This method is only indicated for people who have had complications like recurrent attacks of acute rheumatic fever or rheumatic heart disease. Antibiotics are limited in their ability to prevent these infections since there are a variety of subtypes of group A streptococci that can cause the infection.
The vaccine approach has a greater likelihood of effectively preventing group A streptococcal infections because vaccine formulations can target multiple subtypes of the bacteria. A vaccine developed by George and Gladys Dick in 1924 was discontinued due to poor efficacy and the introduction of antibiotics. Difficulties in vaccine development include the considerable strain variety of group A streptococci present in the environment and the amount of time and number of people needed for appropriate trials for safety and efficacy of any potential vaccine. There have been several attempts to create a vaccine in the past few decades. These vaccines, which are still in the development phase, expose to the person to proteins present on the surface of the group A streptococci to activate an immune response that will prepare the person to fight and prevent future infections.
There used to be a diphtheria scarlet fever vaccine. It was, however, found not to be effective. This product was discontinued by the end of World War II.
Meningitis can be diagnosed after death has occurred. The findings from a post mortem are usually a widespread inflammation of the pia mater and arachnoid layers of the meninges. Neutrophil granulocytes tend to have migrated to the cerebrospinal fluid and the base of the brain, along with cranial nerves and the spinal cord, may be surrounded with pus – as may the meningeal vessels.
No vaccines are currently available to protect against "S. pyogenes" infection, although research is underway to develop one. Difficulties in developing a vaccine include the wide variety of strains of "S. pyogenes" present in the environment and the large amount of time and people that will be needed for appropriate trials for safety and efficacy of the vaccine.
Bacterial and viral meningitis are contagious, but neither is as contagious as the common cold or flu. Both can be transmitted through droplets of respiratory secretions during close contact such as kissing, sneezing or coughing on someone, but cannot be spread by only breathing the air where a person with meningitis has been. Viral meningitis is typically caused by enteroviruses, and is most commonly spread through fecal contamination. The risk of infection can be decreased by changing the behavior that led to transmission.
The diagnosis of dengue fever may be confirmed by microbiological laboratory testing. This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection (such as for NS1) or specific antibodies (serology). Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost. Detection of NS1 during the febrile phase of a primary infection may be greater than 90% sensitive however is only 60–80% in subsequent infections. All tests may be negative in the early stages of the disease. PCR and viral antigen detection are more accurate in the first seven days. In 2012 a PCR test was introduced that can run on equipment used to diagnose influenza; this is likely to improve access to PCR-based diagnosis.
These laboratory tests are only of diagnostic value during the acute phase of the illness with the exception of serology. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in reinfection. IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection, IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In testing for IgG and IgM antibodies there may be cross-reactivity with other flaviviruses which may result in a false positive after recent infections or vaccinations with yellow fever virus or Japanese encephalitis. The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.
The World Health Organization's 2009 classification divides dengue fever into two groups: uncomplicated and severe. This replaces the 1997 WHO classification, which needed to be simplified as it had been found to be too restrictive, though the older classification is still widely used including by the World Health Organization's Regional Office for South-East Asia as of 2011. Severe dengue is defined as that associated with severe bleeding, severe organ dysfunction, or severe plasma leakage while all other cases are uncomplicated. The 1997 classification divided dengue into undifferentiated fever, dengue fever, and dengue hemorrhagic fever. Dengue hemorrhagic fever was subdivided further into grades I–IV. Grade I is the presence only of easy bruising or a positive tourniquet test in someone with fever, grade II is the presence of spontaneous bleeding into the skin and elsewhere, grade III is the clinical evidence of shock, and grade IV is shock so severe that blood pressure and pulse cannot be detected. Grades III and IV are referred to as "dengue shock syndrome".
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
Screening ECGs (either at rest or with exercise) are not recommended in those without symptoms who are at low risk. This includes those who are young without risk factors. In those at higher risk the evidence for screening with ECGs is inconclusive.
Additionally echocardiography, myocardial perfusion imaging, and cardiac stress testing is not recommended in those at low risk who do not have symptoms.
Some biomarkers may add to conventional cardiovascular risk factors in predicting the risk of future cardiovascular disease; however, the clinical value of some biomarkers is questionable.
The NIH recommends lipid testing in children beginning at the age of 2 if there is a family history of heart disease or lipid problems. It is hoped that early testing will improve lifestyle factors in those at risk such as diet and exercise.
Screening and selection for primary prevention interventions has traditionally been done through absolute risk using a variety of scores (ex. Framingham or Reynolds risk scores). This stratification has separated people who receive the lifestyle interventions (generally lower and intermediate risk) from the medication (higher risk). The number and variety of risk scores available for use has multiplied, but their efficacy according to a 2016 review was unclear due to lack of external validation or impact analysis. Risk stratification models often lack sensitivity for population groups and do not account for the large number of negative events among the intermediate and low risk groups. As a result, future preventative screening appears to shift toward applying prevention according to randomized trial results of each intervention rather than large-scale risk assessment.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
It is suggested that splenectomized persons receive the following vaccinations, and ideally prior to planned splenectomy surgery:
- Pneumococcal polysaccharide vaccine (not before 2 years of age). Children may first need one or more boosters of pneumococcal conjugate vaccine if they did not complete the full childhood series.
- Haemophilus influenzae type b vaccine, especially if not received in childhood. For adults who have not been previously vaccinated, two doses given two months apart was advised in the new 2006 UK vaccination guidelines (in the UK may be given as a combined Hib/MenC vaccine).
- Meningococcal conjugate vaccine, especially if not received in adolescence. Previously vaccinated adults require a single booster and non-immunised adults advised, in UK since 2006, to have two doses given two months apart. Children too young for the conjugate vaccine should receive meningococcal polysaccharide vaccine in the interim.
- Influenza vaccine, every winter, to help prevent getting secondary bacterial infection.
Because of the increased risk of infection, physicians administer oral antibiotics as a prophylaxis after a surgical splenectomy (or starting at birth, for congenital asplenia or functional asplenia).
Those with asplenia are also cautioned to start a full-dose course of antibiotics at the first onset of an upper or lower respiratory tract infection (for example, sore throat or cough), or at the onset of any fever.
Routine vaccination against meningococcus is recommended by the Centers for Disease Control and Prevention for all 11- to 18-year-olds and people who have poor splenic function (who, for example, have had their spleen removed or who have sickle-cell disease which damages the spleen), or who have certain immune disorders, such as a complement deficiency.
Myelitis has an extensive differential diagnosis. The type of onset (acute versus subacute/chronic) along with associated symptoms such as the presence of pain, constitutional symptoms that encompass fever, malaise, weight loss or a cutaneous rash may help identify the cause of myelitis. In order to establish a diagnosis of myelitis, one has to localize the spinal cord level, and exclude cerebral and neuromuscular diseases. Also a detailed medical history, a careful neurologic examination, and imaging studies using magnetic resonance imaging (MRI) are needed. In respect to the cause of the process, further work-up would help identify the cause and guide treatment. Full spine MRI is warranted, especially with acute onset myelitis, to evaluate for structural lesions that may require surgical intervention, or disseminated disease. Adding gadolinium further increases diagnostic sensitivity. A brain MRI may be needed to identify the extent of central nervous system (CNS) involvement. Lumbar puncture is important for the diagnosis of acute myelitis when a tumoral process, inflammatory or infectious cause are suspected, or the MRI is normal or non-specific. Complementary blood tests are also of value in establishing a firm diagnosis. Rarely, a biopsy of a mass lesion may become necessary when the cause is uncertain. However, in 15–30% of people with subacute or chronic myelitis, a clear cause is never uncovered.
The health care provider will perform a physical exam. Detailed questions will be asked about the symptoms.
If a streptococcus infection is suspected, tests will be done to confirm the infection. These include:
- Throat swab
- Anti-DNAse B blood test
- Antistreptolysin O (ASO) blood test
Further testing may include:
- Blood tests such as ESR, CBC
- MRI or CT scan of the brain
Insufficient physical activity (defined as less than 5 x 30 minutes of moderate activity per week, or less than 3 x 20 minutes of vigorous activity per week) is currently the fourth leading risk factor for mortality worldwide. In 2008, 31.3% of adults aged 15 or older (28.2% men and 34.4% women) were insufficiently physically active.
The risk of ischemic heart disease and diabetes mellitus is reduced by almost a third in adults who participate in 150 minutes of moderate physical activity each week (or equivalent). In addition, physical activity assists weight loss and improves blood glucose control, blood pressure, lipid profile and insulin sensitivity. These effects may, at least in part, explain its cardiovascular benefits.
Patients with terminal complement pathway deficiency should receive meningococcal and pneumococcal vaccinations. They can receive live vaccines.
According to Lombroso and Scahill, 2008, "(f)ive diagnostic criteria were proposed for PANDAS: (1) the presence of a tic disorder and/or OCD consistent with DSM-IV; (2) prepubertal onset of neuropsychiatric symptoms; (3) a history of a sudden onset of symptoms and/or an episodic course with abrupt symptom exacerbation interspersed with periods of partial or complete remission; (4) evidence of a temporal association between onset or exacerbation of symptoms and a prior streptococcal infection; and (5) adventitious movements (e.g., motoric hyperactivity and choreiform movements) during symptom exacerbation". The children, originally described by Swedo "et al" in 1998, usually have dramatic, "overnight" onset of symptoms, including motor or vocal tics, obsessions, and/or compulsions. Some studies have supported acute exacerbations associated with streptococcal infections among clinically defined PANDAS subjects (Murphy and Pichichero, 2002; Giulino "et al", 2002); others have not (Luo "et al", 2004; Perrin "et al", 2004).
Concerns have been raised that PANDAS may be overdiagnosed, as a significant number of patients diagnosed with PANDAS by community physicians did not meet the criteria when examined by specialists, suggesting the PANDAS diagnosis is conferred by community physicians without conclusive evidence.
The United States Preventive Services Task Force (USPSTF) recommends screening for gonorrhea in women at increased risk of infection, which includes all sexually active women younger than 25 years. Extragenital gonorrhea and chlamydia are highest in men who have sex with men (MSM). Additionally, the USPSTF also recommends routine screening in people who have previously tested positive for gonorrhea or have multiple sexual partners and individuals who use condoms inconsistently, provide sexual favors for money, or have sex while under the influence of alcohol or drugs.
Screening for gonorrhea in women who are (or intend to become) pregnant, and who are found to be at high risk for sexually transmitted diseases, is recommended as part of prenatal care in the United States.
Treatment of Sydenham's Chorea is based on the following principles:
1. The first tenet of treatment is to eliminate the streptococcus at a primary, secondary and tertiary level. Strategies involve the adequate treatment of throat and skin infections, with a course of penicillin when Sydenham's Chorea is newly diagnosed, followed by long-term penicillin prophylaxis. Behavioural and emotional changes may precede the movement disorders in a previously well child.
2. Treatment of movement disorders. Therapeutic efforts are limited to palliation of the movement disorders. Haloperidol is frequently used because of its anti-dopaminergic effect. It has serious potential side-effects, e.g., tardive dyskinesia. In a study conducted at the RFC, 25 out of 39 patients on haloperidol reported side-effects severe enough to cause the physician or parent to discontinue treatment or reduce the dose. Other medications which have been used to control the movements include pimozide, clonidine, valproic acid, carbamazepine and phenobarbitone.
3. Immunomodulatory interventions include steroids, intravenous immunoglobulins, and plasma exchange. Patients may benefit from treatment with steroids; controlled clinical trials are indicated to explore this further.
4. There are several historical case series reporting successful treatment of Sydenham's Chorea by inducing fever.
Suspect terminal complement pathway deficiency with patients who have more than one episode of Neisseria infection.
Initial complement tests often include C3 and C4, but not C5 through C9. Instead, the CH50 result may play a role in diagnosis: if the CH50 level is low but C3 and C4 are normal, then analysis of the individual terminal components may be warranted.
Cultures are not often taken or needed as most cases resolve either with time or typical antibiotics. Swabs for bacterial culture are necessary if the history and signs suggest bacterial conjunctivitis but there is no response to topical antibiotics. Viral culture may be appropriate in epidemic case clusters.
A patch test is used to identify the causative allergen in the case where conjunctivitis is caused by allergy.
Conjunctival scrapes for cytology can be useful in detecting chlamydial and fungal infections, allergy, and dysplasia, but are rarely done because of the cost and the general lack of laboratory staff experienced in handling ocular specimens. Conjunctival incisional biopsy is occasionally done when granulomatous diseases ("e.g.", sarcoidosis) or dysplasia are suspected.