Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If a patient displays congenital melanocytic nevi or giant congenital melanocytic nevi, the criteria for diagnosis of neurocutaneous melanosis is as follows:
- Melanocytic deposits exist within the central nervous system that are either malignant or benign
- The cutaneous lesions, giant or otherwise, are not malignant
This criteria is typically validated through biopsy of the cutaneous lesions and imaging of the central nervous system. It is important to establish that the cutaneous lesions are benign. If not, then the melanocytic deposits in the central nervous system may be the result of metastasis of cutaneous melanoma and not neurocutaneous melanosis.
Imaging has been shown to be the only reliable detection method for the presence of neurocutaneous melanosis that can be performed in living patients. Currently, the preferred imaging modality for diagnosis of neurocutaneous melanosis is Magnetic Resonance Imaging, although ultrasound is another viable option. The signal due melanin deposits in the leptomeninges typical of neurocutaneous melanosis can be easily detected in MRI scans of patients under four months old. In patients above this age, there is some suggestion that normal brain myelination may partially obscure these signals.
As most patients with neurocutaneous melanosis are asymptomatic, those who are diagnosed through MR imaging are not guarantied to develop symptoms. Those diagnosed who did not develop symptoms ranged from 10% to 68%. This wide range is most likely due to the large number of asymptomatic, undiagnosed patients with neurocutaneous melanosis.
Nevi are typically diagnosed clinically with the naked eye or using dermatoscopy. More advanced imaging tests are available for distinguishing melanocytic nevi from melanoma, including computerized dermoscopy and image analysis. The management of nevi depends on the type of nevus and the degree of diagnostic uncertainty. Some nevi are known to be benign, and may simply be monitored over time. Others may warrant more thorough examination and biopsy for histopathological examination (looking at a sample of skin under a microscope to detect unique cellular features). For example, a clinician may want to determine whether a pigmented nevus is a type of melanocytic nevus, dysplastic nevus, or melanoma as some of these skin lesions pose a risk for malignancy. The ABCDE criteria (asymmetry, border irregularity, color variegation, diameter > 6 mm, and evolution) are often used to distinguish nevi from melanomas in adults, while modified criteria (amelanosis, bleeding or bumps, uniform color, small diameter or de novo, and evolution) can be used when evaluating suspicious lesions in children. In addition to histopathological examination, some lesions may also warrant additional tests to aid in diagnosis, including special stains, immunohistochemistry, and electron microscopy. Typically; the nevi which exist since childhood are harmless
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.
The majority of patients with neurocutaneous melanosis are asymptomatic and therefore have a good prognosis with few complications. Most are not diagnosed, so definitive data in not available. For symptomatic patients, the prognosis is far worse. In patients without the presence of melanoma, more than 50% die within 3 years of displaying symptoms. While those with malignancy have a mortality rate of 77% with most patients displaying symptoms before the age of 2.
The presence of a Dandy-Walker malformation along with neurocutaneous melanosis, as occurs in 10% of symptomatic patients, further deteriorates prognosis. The median survival time for these patients is 6.5 months after becoming symptomatic.
Clinical diagnosis can be made with the naked eye using the ABCD guideline or by using dermatoscopy. An online-screening test is also available to help screen out benign moles.
The management of a nevus depends on the specific diagnosis, however, the options for treatment generally include the following modalities:
Large and especially giant congenital nevi are at higher risk for malignancy degeneration into melanoma. Because of the premalignant potential, it is an acceptable clinical practice to remove congenital nevi electively in all patients and relieve the nevocytic overload.
Benign congenital nevi can have histological characteristics resembling melanomas, often breaking most if not all of the ABCDE rules. Dermatoscopic findings of the smaller forms of benign congenital nevi can aid in their differentiation from other pigmented neoplasms.
Microscopically, congenital melanocytic nevi appear similar to acquired nevi with two notable exceptions. For the congenital nevus, the neval cells are found deeper into the dermis. Also, the deeper nevus cells can be found along with neurovascular bundles, with both surrounding hair follicles, sebaceous glands, and subcutaneous fat. Such annexes and the hypodermis can also be hypoplasic or, conversely, present aspects of hamartoma.
It often requires a dermatologist to fully evaluate moles. For instance, a small blue or bluish-black spot, often called a blue nevus, is usually benign but often mistaken for melanoma. Conversely, a junctional nevus, which develops at the junction of the dermis and epidermis, is potentially cancerous.
A basic reference chart used for consumers to spot suspicious moles is found in the mnemonic A-B-C-D, used by institutions such as the American Academy of Dermatology and the National Cancer Institute. The letters stand for asymmetry, border, color, and diameter. Sometimes, the letter E (for elevation or evolving) is added. According to the American Academy of Dermatology, if a mole starts changing in size, color, shape or, especially, if the border of a mole develops ragged edges or becomes larger than a pencil eraser, it would be an appropriate time to consult with a physician. Other warning signs include a mole, even if smaller than a pencil eraser, that is different from the others and begins to crust over, bleed, itch, or become inflamed. The changes may indicate developing melanomas. The matter can become clinically complicated because mole removal depends on which types of cancer, if any, come into suspicion.
A recent and novel method of melanoma detection is the "ugly duckling sign" It is simple, easy to teach, and highly effective in detecting melanoma. Simply, correlation of common characteristics of a person's skin lesion is made. Lesions which greatly deviate from the common characteristics are labeled as an "ugly duckling", and further professional exam is required. The "little red riding hood sign", suggests that individuals with fair skin and light colored hair might have difficult-to-diagnose melanomas. Extra care and caution should be rendered when examining such individuals as they might have multiple melanomas and severely dysplastic nevi. A dermatoscope must be used to detect "ugly ducklings", as many melanomas in these individuals resemble non-melanomas or are considered to be "wolves in sheep clothing". These fair skinned individuals often have lightly pigmented or amelanotic melanomas which will not present easy-to-observe color changes and variation in colors. The borders of these amelanotic melanomas are often indistinct, making visual identification without a dermatoscope very difficult.
People with a personal or family history of skin cancer or of dysplastic nevus syndrome (multiple atypical moles) should see a dermatologist at least once a year to be sure they are not developing melanoma.
Differential diagnosis of this condition includes the Birt-Hogg-Dubé syndrome and tuberous sclerosis. As the skin lesions are typically painful, it is also often necessary to exclude other painful tumors of the skin (including blue rubber bleb nevus, leiomyoma, eccrine spiradenoma, neuroma, dermatofibroma, angiolipoma, neurilemmoma, endometrioma, glomus tumor and granular cell tumor; the mnemonic "BLEND-AN-EGG" may be helpful). Other skin lesions that may need to be considered include cylindroma, lipoma, poroma and trichoepithelioma; these tend to be painless and have other useful distinguishing features.
Usually observed at birth or shortly thereafter in 94% of patients, in other reports, patients did not develop skin lesions until 3 months or even 2 years after birth. Females are typically affected more often than males (64%).
The prognosis is favorable in most patients with an isolated cutaneous abnormality. In the majority of cases, both the vivid red marking and the difference in circumference of the extremities regress spontaneously during the first year of life. It is theorized that this may be due to the normal maturation process, with thickening of the epidermis and dermis. Improvements for some patients can continue for up to 10 years, while in other cases, the marbled skin may persist for the patient's lifetime.
One study reported an improvement in lesions in 46% of patients within 3 years. If CMTC persists into adulthood, it can result in complaints due to paresthesia, increased sensitivity to cold and pain, and the formation of ulcers.
Few reports included long-term follow up of CMTC into adolescence and adulthood. While about 50% of patients seem to show definite improvement in the reticular vascular pattern, the exact incidence and cause of persistent cases are unknown.
The skin lesions may be difficult to diagnose clinically but a punch biopsy will usually reveal a Grenz zone separating the tumour from the overlying skin. Histological examination shows dense dermal nodules composed of elongated cells with abundant eosinophilic cytoplasm arranged in fascicles (spindle cells). The nuclei are uniform, blunt-ended and cigar-shaped with only occasional mitoses. Special stains that may be of use in the diagnosis include Masson's trichrome, Van Gieson's stain and phosphotungstic acid–haematoxylin.
The renal cell carcinomas have prominent eosinophilic nucleoli surrounded by a clear halo.
Spitz nevi are uncommon. Their annual incidence was estimated in a coastal population of sub-tropical Queensland to be 1.4 cases per 100,000 people. For comparison, the annual incidence of melanoma in the same population, which is high by world standards is 25.4 cases per 100,000 people.
Although they are most commonly found on people in their first two decades of life, the age range for people with Spitz nevi is from 6 months to 71 years, with a mean age of 22 years and a median age of 19 years.
Treatment is by excisional biopsy, wide local excision and possibly sentinel node biopsy. Spread of disease to local lymph nodes or distant sites (typically brain, bone, skin and lung) marks a decidedly poor prognosis.
Ferner et al. give the following diagnostic criteria for Schwannomatosis:
- Definite
- Age >30 years and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- One nonvestibular schwannoma plus a first-degree relative with schwannomatosis
- Possible
- Age <30 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- Age >45 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no symptoms of 8th nerve dysfunction and no NF2, or
- Nonvestibular schwannoma and first-degree relative with schwannomatosis
- Segmental. Diagnosed as definite or possible but limited to one limb or ≤5 contiguous segments of spine.
Another set of criteria are:
- Two or more nonintradermal (cutaneous) schwannomas
- No evidence of vestibular tumor
- No known NF-2 mutation
or
- One pathologically confirmed nonvestibular schwannoma plus a first degree relative who meets the above criteria.
First dilemma in diagnosis is recognition. As lentigo malignas often present on severely sun-damaged skin, it is frequently found amongst numerous pigmented lesions – thin seborrheic keratoses, lentigo senilis, lentigines. It is difficult to distinguish these lesions with the naked eye alone, and even with some difficulty using dermatoscopy. As the lentigo maligna is often very large, it often merges with, or encompasses other skin tumors – such as lentigines, melanocytic nevi, and seborrheic keratosis.
Second dilemma is the biopsy technique. Even though excisional biopsy (removing the entire lesion) is ideal, and advocated by pathologists; practical reason dictates that this should not be done. These tumors are often large and presenting on the facial area. Excision of such large tumor would be absolutely contraindicated if the lesion's identity is uncertain. The preferred method of diagnosis is by using a punch biopsy, allowing the physician to sample multiple full thickness pieces of the tumor at multiple sites. While one section of the tumor might show benign melanocytic nevus, another section might show features concerning for severe cellular atypia. When cellular atypia is noted, a pathologist might indicate that the entire lesion should be removed. It is at this point that one can comfortablly remove the entire lesion, and thus confirm the final diagnosis of lentigo maligna. The size of the punch biopsy can vary from 1 mm to 2 mm, but it is preferable to use a punch 1.5 mm or larger. Representative samples of the most atypical parts of the nevus should be biopsied, often guided by dermatoscopy.
There is no diagnosis as yet for Cutis verticis gyrata (CVH), but it can generally be found out by self, when the person is applying oil to the scalp or getting the hair fully shaven. The ripples are present either in identical form, mostly in the posterior direction, sometimes horizontally also, but it looks more like the ripples of the brain.
There is no clinical diagnosis for CVG as these cases are rarely seen and is often comorbid with other conditions.
Phakomatosis pigmentovascularis is a rare neurocutanous condition where there is coexistence of a capillary malformation (port-wine stain) with various melanocytic lesions, including dermal melanocytosis (Mongolian spots), nevus spilus, and nevus of Ota.
Phakomatosis pigmentovascularis is subdivided into five types:
- Type 1 PWS + epidermal nevus
- Type 2 (most common): PWS + dermal melanocytosis +/- nevus anemicus
- Type 3: PWS + nevus spilus +/- nevus anemicus
- Type 4: PWS + nevus spilus + dermal melanocytosis +/- nevus anemicus
- Type 5: CMTC (Cutis marmorata telangiectatica congenita) + dermal melanocytosis
They all can contain capillary malformation. Type 2 is the most common and can be associated with granular cell tumor. Some further subdivide each type into categories A & B; with A representing oculocutaneous involvement and subtype B representing extra oculocutaneous involvement. Others have proposed fewer subtypes but currently this rare entity is mostly taught as having five subtypes currently.
Schwannomatosis can not presently be diagnosed prenatally or in the embryo, because the gene for it has not yet been positively identified.
The histopathologic characteristics of melanoma in FAMMM kindreds are not different from those seen in sporadic cases of melanoma and, thus, are not useful in diagnosing the syndrome. Superficial spreading melanoma (SSM) and nodular melanoma are the most frequently encountered histological melanoma subtypes in patients with CDKN2A mutations, which is consistent with the relative early age of onset.
The cause of Spitz nevi is not yet known. There is an association with sunburn, but causation is not established. Genetic studies of Spitz nevi have shown that most cells have the normal number of chromosomes, however a minority (25%) of cells have been shown to contain extra copies of parts of some chromosomes, such as the short arm of chromosome 11 (11p).
Spitz nevi characteristically have vertically arranged nests of nevus cells that have both a spindled and an morphology. Apoptotic cells may be seen at the dermoepidermal junction. The main histologic differential diagnoses are pigmented spindle cell nevus and malignant melanoma.
There is no 'cure' for this condition and currently, medical treatment is limited to plastic surgery with excision of the folds by means of scalp reduction/surgical resection. Scalp subcision has also been suggested as a treatment. Additional suggestions also include injections of a dermal filler i.e. Sculptra (poly-L-lactic acid)
Nevoid melanoma is a cutaneous condition that may resemble a Spitz nevus or an acquired or congenital melanocytic nevus.