Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Meige's is commonly misdiagnosed and most doctors will have not seen this condition before. Usually a neurologist who specializes in movement disorders can detect Meige's. There is no way to detect Meige's by blood test or MRI or CT scans. OMD by itself may be misdiagnosed as TMJ.
The lack of prompt response to anticholinergic drugs in cases of idiopathic Meige's syndrome is important in differentiating it from acute dystonia, which does respond to anticholinergics.
In some cases Meige's syndrome can be reversed when it is caused by medication. It has been theorized that it is related to cranio-mandibular orthopedic misalignment, a condition that has been shown to cause a number of other movement disorders (Parkinon's, tourettes, and torticollis). This theory is supported by the fact that the trigeminal nerve is sensory for blink reflex, and becomes hypertonic with craniomandibular dysfunction. Palliative treatments are available, such as botulinum toxin injections.
Evaluation of a child with torticollis begins with history taking to determine circumstances surrounding birth and any possibility of trauma or associated symptoms. Physical examination reveals decreased rotation and bending to the side opposite from the affected muscle. Some say that congenital cases more often involve the right side, but there is not complete agreement about this in published studies. Evaluation should include a thorough neurologic examination, and the possibility of associated conditions such as developmental dysplasia of the hip and clubfoot should be examined. Radiographs of the cervical spine should be obtained to rule out obvious bony abnormality, and MRI should be considered if there is concern about structural problems or other conditions.
Ultrasonography is another diagnostic tool that has high frequency sound waves used to visualize the muscle tissue. A colour histogram can also be used to determine cross sectional area and thickness of the muscle.
Evaluation by an optometrist or an ophthalmologist should be considered in children to ensure that the torticollis is not caused by vision problems (IV cranial nerve , nystagmus-associated "null position," etc.).
Differential diagnosis for torticollis involves
- Cranial nerve IV palsy
- Spasmus nutans
- Sandifer syndrome
- Myasthenia gravis
Cervical dystonia appearing in adulthood has been believed to be idiopathic in nature, as specific imaging techniques most often find no specific cause.
Spasmodic torticollis is a form of focal dystonia, a neuromuscular disorder that consists of sustained muscle contractions causing repetitive and twisting movements and abnormal postures in a single body region. There are two main ways to categorize spasmodic torticollis: age of onset, and cause. The disorder is categorized as early onset if the patient is diagnosed before the age of 27, and late onset thereafter. The causes are categorized as either primary (idiopathic) or secondary (symptomatic). Spasmodic torticollis can be further categorized by the direction and rotation of head movement.
There is no cure for torsion dystonia. However, there are several medical approaches that can be taken in order to lessen the symptoms of the disease. The treatment must be patient specific, taking into consideration all of the previous and current health complications. The doctor that creates the treatment must have intimate knowledge of the patients’ health and create a treatment plan that covers all of the symptoms focusing on the most chronic areas.
The first step for most with the disorder begins with some form of physical therapy in order for the patient to gain more control over the affected areas. The therapy can help patients with their posture and gain control over the areas of their body that they have the most problems with.
The second step in the treatment process is medication. The medications focus on the chemicals released by neurotransmitters in the nervous system, which control muscle movement. The medications on the market today are anticholinergics, benzodiazepines, baclofen, dopaminergic agents/dopamine-depleting agents, and tetrabenazine. Each medication is started on a low dosage and gradually increased to higher doses as the disease progresses and the side effects are known for the individual.
A more site-specific treatment is the injection of botulinum toxin. It is injected directly into the muscle and works much the same way the oral medications do—by blocking neurotransmitters. The injections are not a treatment for the disease, but are a means to control its symptoms.
A fourth option in the treatment for the symptoms of torsion dystonia is surgery. Surgery is performed only if the patient does not respond to the oral medications or the injections. The type of surgery performed is specific to the type of dystonia that the patient has.
Since paroxysmal exercise-induced dystonia is such a rare disorder it makes it difficult to study the disease and find consistencies. Many of the current studies seem to have contradicting conclusion but this is due to the fact that studies are usually limited to a very small number of test subjects. With such small numbers it is hard to determine what is a trend and what is random when in comes to characterizing the disease. Further study is needed to find better diagnostic techniques and treatments for PED. Patients with PED are living a limited lifestyle since simple tasks like walking and exercise are often impossible.
The most commonly used scale to rate the severity of spasmodic torticollis is the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). It has been shown that this rating system has widespread acceptance for use in clinical trials, and has been shown to have “good interobserver reliability.” There are three scales in the TWSTRS: torticollis severity scale, disability scale, and pain scale. These scales are used to represent the severity, the pain, and the general lifestyle of spasmodic torticollis.
A number of operations that cut one of the nerves of the vocal folds (the recurrent laryngeal nerve) has improved the voice of many for several months to several years but the improvement may be temporary.
An operation called "selective laryngeal adductor denervation-rennervation (SLAD-R)" is effective specifically for adductor spasmodic dysphonia which has shown good outcomes in about 80% of people at 8 years. Post-surgery voices can be imperfect and about 15% of people have significant difficulties. If symptoms do recur this is typically in the first 12 months. Another operation called "recurrent laryngeal nerve avulsion" has positive outcomes of 80% at three years.
Another surgical option is a thyroplasty, which ultimately changes the position or length of the vocal folds. After thyroplasty there is an increase in both objective and subjective measures of speech.
Due to the condition's rarity, it is frequently misdiagnosed, often as cerebral palsy. This results in patients often living their entire childhood with the condition untreated.
The diagnosis of SS can be made from a typical history, a trial of dopamine medications, and genetic testing. Not all patients show mutations in the GCH1 gene (GTP cyclohydrolase I), which makes genetic testing imperfect.
Sometimes a lumbar puncture is performed to measure concentrations of biopterin and neopterin, which can help determine the exact form of dopamine-responsive movement disorder: early onset parkinsonism (reduced biopterin and normal neopterin), GTP cyclohydrolase I deficiency (both decreased) and tyrosine hydroxylase deficiency (both normal).
In approximately half of cases, a phenylalanine loading test can be used to show decreased conversion from the amino acid phenylalanine to tyrosine. This process uses BH4 as a cofactor.
During a sleep study (polysomnography), decreased twitching may be noticed during REM sleep.
An MRI scan of the brain can be used to look for conditions that can mimic SS (for example, metal deposition in the basal ganglia can indicate Wilson's disease or pantothenate kinase-associated neurodegeneration). Nuclear imaging of the brain using positron emission tomography (PET scan) shows a normal radiolabelled dopamine uptake in SS, contrary to the decreased uptake in Parkinson's disease.
Other differential diagnoses include metabolic disorders (such as GM2 gangliosidosis, phenylketonuria, hypothyroidism, Leigh disease) primarily dystonic juvenile parkinsonism, autosomal recessive early onset parkinsonism with diurnal fluctuation, early onset idiopathic parkinsonism, focal dystonias, dystonia musculorum deformans and dyspeptic dystonia with hiatal hernia.
- Diagnosis - main
- typically referral by GP to specialist Neurological Hospital e.g. National Hospital in London.
- very hard to diagnose as condition is dynamic w.r.t. time-of-day AND dynamic w.r.t. age of patient.
- correct diagnosis only made by a consultant neurologist with a complete 24-hour day-cycle observation(with video/film) at a Hospital i.e. morning(day1)->noon->afternoon->evening->late-night->sleep->morning(day2).
- patient with suspected SS required to walk in around hospital in front of Neuro'-consultant at selected daytime intervals to observe worsening walking pattern coincident with increased muscle tension in limbs.
- throughout the day, reducing leg-gait, thus shoe heels catching one another.
- diurnal affect of condition: morning(fresh/energetic), lunch(stiff limbs), afternoon(very stiff limbs), evening(limbs worsening), bedtime(limbs near frozen).
- muscle tension in thighs/arms: morning(normal), lunch(abnormal), afternoon(very abnormal), evening(bad), bedtime(frozen solid).
- Diagnosis - additional
- lack of self-esteem at school/college/University -> eating disorders in youth thus weight gains.
- lack of energy during late-daytime (teens/adult) -> compensate by over-eating.
Diagnosis is similar, but slightly different for each type of PD. Some types are more understood than others, and therefore have more criteria for diagnosis.
Paroxysmal Dyskinesia is not a fatal disease. Life can be extremely difficult with this disease depending on the severity. The prognosis of PD is extremely difficult to determine because the disease varies from person to person. The attacks for PKD can be reduced and managed with proper anticonvulsants, but there is no particular end in sight for any of the PD diseases. PKD has been described to cease for some patients after the age of 20, and two patients have reported to have a family history of the disease where PKD went into complete remission after the age of 23. With PNKD and PED, at this time, there is no proper way to determine an accurate prognosis.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
The disease is more commonly found amongst Ashkenazi Jews. The occurrence of torsion dystonia in the Ashkenazi Jewish population as stated by the Department of Epidemiology and Public Health of Yale University School of Medicine in New Haven, CT; "Reports dating to the beginning of this century describe Ashkenazi Jewish (AJ) families with multiple cases of ITD either in siblings (Schwalbe 1908; Bernstein 1912; Abrahamson 1920) or in parents and offspring (Wechsler and Brock 1922; Mankowsky and Czerny 1929; Regensberg 1930). The first comprehensive evaluation of the mode of inheritance of ITD in Jewish and non-Jewish families was described by Zeman and Dyken (1967), who concluded that the disorder was inherited as an autosomal dominant with incomplete penetrance in both populations. Although they concluded that the gene frequency was higher in the AJ population than in non-Jews, no difference in mode of inheritance or disease mechanism was construed."
Oromandibular dystonia is a form of focal dystonia affecting the mouth, jaw and tongue, and in this disease it is hard to speak. It is associated with bruxism.
Botulinum toxin has been used in treatment.
Since the root of the problem is neurological, doctors have explored sensorimotor retraining activities to enable the brain to "rewire" itself and eliminate dystonic movements. The work of several doctors such as Nancy Byl and Joaquin Farias has shown that sensorimotor retraining activities and proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost due to Cervical Dystonia, oromandibular dystonia and dysphonia.
Botulinum toxin (Botox) is often used to improve some symptoms of spasmodic dysphonia. Whilst the level of evidence for its use is limited, it remains a popular choice for many patients due to the predictability and low chance of long term side effects. It results in periods of some improvement. The duration of benefit averages 10–12 weeks before the patient returns to baseline. Repeat injection is required to sustain good vocal production.
Some causes of blepharospasm have been identified; however, the causes of many cases of blepharospasm remain unknown, although some educated guesses are being made. Some blepharospasm patients have a history of dry eyes and/or light sensitivity, but others report no previous eye problems before onset of initial symptoms.
Some drugs can induce blepharospasm, such as those used to treat Parkinson's disease, as well as sensitivity to hormone treatments, including estrogen-replacement therapy for women going through menopause. Blepharospasm can also be a symptom of acute withdrawal from benzodiazepines. In addition to blepharospasm being a benzodiazepine withdrawal symptom, prolonged use of benzodiazepines can induce blepharospasm and is a known risk factor for the development of blepharospasm.
Blepharospasm may also come from abnormal functioning of the brain basal ganglia. Simultaneous dry eye and dystonias such as Meige's syndrome have been observed. Blepharospasms can be caused by concussions in some rare cases, when a blow to the back of the head damages the basal ganglia.
Multiple sclerosis can cause blepharospasm.
As of 1993 only approximately 30 people with AHC had been described in scientific literature. Due to the rarity and complexity of AHC, it is not unusual for the initial diagnosis to be incorrect, or for diagnosis to be delayed for several months after the initial symptoms become apparent. The average age of diagnosis is just over 36 months. Diagnosis of AHC is not only difficult because of its rarity, but because there is no diagnostic test, making this a diagnosis of exclusion. There are several generally accepted criteria which define this disorder, however other conditions with a similar presentation, such as HSV encephalitis, must first be ruled out. Due to these diagnostic difficulties, it is possible that the commonness of the disease is underestimated.
The following descriptions are commonly used in the diagnosis of AHC. The initial four criteria for classifying AHC were that it begins before 18 months of age, includes attacks of both hemiplegia on either side of the body, as well as other autonomic problems such as involuntary eye movement (episodic monocular nystagmus), improper eye alignment, choreoathetosis, and sustained muscle contractions (dystonia). Finally, patients suffer from intellectual disabilities, delayed development, and other neurological abnormalities. These diagnostic criteria were updated in 1993 to include the fact that all of these symptoms dissipate immediately upon sleeping. Diagnostic criteria were also expanded to include episodes of bilateral hemiplegia which shifted from one side of the body to the other.
Recent criteria have been proposed for screening for AHC early, in order to improve the diagnostic timeline. These screening criteria include focal or unilateral paroxysmal dystonia in the first 6 months of life, as well as the possibility of flaccid hemiplegia either with or separate from these symptoms. Paroxysmal ocular movements should also be considered, and these should include both binocular and monocular symptoms which show in the first 3 months of life.
Patients who develop PSH after traumatic injury have longer hospitalization and longer durations in intensive care in cases where ICU treatment is necessary. Patients often are more vulnerable to infections and spend longer times on ventilators, which can lead to an increased risk of various lung diseases. PSH does not affect mortality rate, but it increases the amount of time it takes a patient to recover from injury, compared to patients with similar injuries who do not develop PSH episodes. It often takes patients who develop PSH longer to reach similar levels of the brain activity seen in patients who do not develop PSH, although PSH patients do eventually reach these same levels.
Surgical release involves the two heads of the sternocleidomastoid muscle being dissected free. This surgery can be minimally invasive and done laparoscopically. Usually surgery is performed on those who are over 12 months old. The surgery is for those who do not respond to physical therapy or botulinum toxin injection or have a very fibrotic sternocleidomastoid muscle. After surgery the child will be required to wear a soft neck collar (also called as Callot's cast). There will be an intense physiotherapy program for 3–4 months as well as strengthening exercises for the neck muscles.
Other treatments include:
- Rest and analgesics for acute cases
- Diazepam or other muscle relaxants
- Botulinum toxin
- Encouraging active movements for children 6–8 months of age
- Ultrasound diathermy
Sporadic cases may be brought on by minor head injuries and concussions. This was observed in one patient who started experiencing painless dystonia after mild exercise following a concussion. More research still needs to be done to determine how injuries can induce PED, as little is known in this area. Two cases of PED have been associated with insulinomas, after removal of which the symptoms of PED were resolved.
Blepharospasm is any abnormal contraction or twitch of the eyelid. In most cases, symptoms last for a few days then disappear without treatment, but sometimes the twitching is chronic and persistent, causing lifelong challenges. In those rare cases, the symptoms are often severe enough to result in functional blindness. The person's eyelids feel like they are clamping shut and will not open without great effort. People have normal eyes, but for periods of time are effectively blind due to their inability to open their eyelids. In contrast, the reflex blepharospasm is due to any pain in and around the eye.
It is of two types: essential and reflex blepharospasm. The benign essential blepharospasm is a focal dystonia—a neurological movement disorder involving involuntary and sustained contractions of the muscles around the eyes. The term "essential" indicates that the cause is unknown, but fatigue, stress, or an irritant are possible contributing factors.
Although there is no cure botulinum toxin injections may help temporarily. A surgical procedure known as myectomy may also be useful. It is a fairly rare disease, affecting only one in every 20,000 people in the United States. The word is from Greek: βλέφαρον / blepharon, eyelid, and σπασμός / spasmos, "spasm," an uncontrolled muscle contraction.
Diagnosing PSH can be very difficult due to the lack of common terminology in circulation and a lack of diagnostic criteria. Different systems for diagnosis have been proposed, but a universal system has not been embraced. One example of a proposed system of diagnosis requires observation confirmation for four of the six following symptoms: fever greater than 38.3 degrees Celsius, tachycardia classified as a heart rate of 120 bpm or higher, hypertension classified as a systolic pressure higher than 160 mmHg or a pulse pressure higher than 80 mmHg, tachypnea classified as respiration rate higher than 30 breaths per minute, excess sweating, and severe dystonia. Ruling out other diseases or syndromes that show similar symptoms is imperative to diagnosis as well. Sepsis, encephalitis, neuroleptic malignant syndrome,
malignant hyperthermia, lethal catatonia, spinal cord injury (not associated with PSH), seizures, and hydrocephalus (this can be associated with PSH) are examples of diagnoses that should be considered due to the manifestation of similar symptoms before confirming a diagnosis of PSH. PSH has no simple radiological features that can be observed or detected on a scan.
Usually the diagnosis is established on clinical grounds. Tremors can start at any age, from birth through advanced ages (senile tremor). Any voluntary muscle in the body may be affected, although the tremor is most commonly seen in the hands and arms and slightly less commonly in the neck (causing the person's head to shake), tongue, and legs. A resting tremor of the hands is sometimes present. Tremor occurring in the legs might be diagnosable as orthostatic tremor.
ET occurs within multiple neurological disorders besides Parkinson's Disease. This includes migraine disorders, where co-occurrences between ET and migraines have been examined.
Most pharmacological treatments work poorly, but the best treatment is a low dosage of clonazepam, a muscle relaxant. Patients may also benefit from other benzodiazepines, phenobarbital, and other anticonvulsants such as valproic acid. Affected individuals have reported garlic to be effective for softening the attacks, but no studies have been done on this.
Although essential tremor is often mild, people with severe tremor have difficulty performing many of their routine activities of daily living. ET is generally progressive in most cases (sometimes rapidly, sometimes very slowly), and can be disabling in severe cases.