Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The Mazzotti reaction, first described in 1948, is a symptom complex seen in patients after undergoing treatment of onchocerciasis with the medication diethylcarbamazine (DEC). Mazzotti reactions can be life-threatening, and are characterized by fever, urticaria, swollen and tender lymph nodes, tachycardia, hypotension, arthralgias, oedema, and abdominal pain that occur within seven days of treatment of microfilariasis. The Mazzotti reaction correlates with intensity of infection; however, there are probably multiple infection intensity-dependent mechanisms responsible for mediating this complex reaction.
The phenomenon is so common when DEC is used for the treatment of onchocerciasis that this drug is the basis of a skin patch test used to confirm that diagnosis. The drug patch is placed on the skin, and if the patient is infected with the microfilaria of "O. volvulus", localized pruritus and urticaria are seen at the application site.
A case of the Mazzotti reaction has been reported after presumptive treatment of schistosomiasis and strongyloidiasis with ivermectin, praziquantel and albendazole. The patient had complete resolution of symptoms after intravenous therapy with methylprednisolone.
Various control programs aim to stop onchocerciasis from being a public health problem. The first was the Onchocerciasis Control Programme (OCP), which was launched in 1974, and at its peak, covered 30 million people in 11 countries. Through the use of larvicide spraying of fast-flowing rivers to control black fly populations, and from 1988 onwards, the use of ivermectin to treat infected people, the OCP eliminated onchocerciasis as a public health problem. The OCP, a joint effort of the World Health Organisation, the World Bank, the United Nations Development Programme, and the UN Food and Agriculture Organization, was considered to be a success, and came to an end in 2002. Continued monitoring ensures onchocerciasis cannot reinvade the area of the OCP.
In 1995, the African Programme for Onchocerciasis Control began covering another 19 countries, mainly relying upon the use of ivermectin. Its goal is to set up a community-directed supply of ivermectin for those who are infected. In these ways, transmission has declined. In 2015, WHO was facilitating launch of an elimination program in Yemen.
In 1992, the Onchocerciasis Elimination Programme for the Americas, which also relies on ivermectin, was launched. On July 29, 2013, the Pan American Health Organization (PAHO) announced that after 16 years of efforts, Colombia had become the first country in the world to eliminate the parasitic disease onchocerciasis. In September 2015, the Onchocerciasis Elimination Program for the Americas announced that onchocerciasis only remained in a remote region on the border of Brazil and Venezuela. The area is home to the Yanomami indigenous people. The first countries to receive verification of elimination were Colombia in 2013, Ecuador in 2014, and Mexico in 2015. Guatemala has submitted a request for verification. The key factor in elimination is mass administration of the antiparasitic drug ivermectin. The initial projection was that the disease would be eliminated from remaining foci in the Americas by 2012.
No vaccine to prevent onchocerciasis infection in humans is available. A vaccine to prevent onchocerciasis infection for cattle is in phase three trials. Cattle injected with a modified and weakened form of "O. ochengi" larvae have developed very high levels of protection against infection. The findings suggest that it could be possible to develop a vaccine that protects people against river blindness using a similar approach. Unfortunately, a vaccine to protect humans is still many years off.
The histomorphologic appearance of insect bites is usually characterized by a wedge-shaped superficial dermal perivascular infiltrate consisting of abundant lymphocytes and scattered eosinophils. This appearance is non-specific, i.e. it may be seen in a number of conditions including:
- Drug reactions,
- Urticarial reactions,
- Prevesicular early stage of bullous pemphigoid, and
- HIV related dermatoses.
In mass drug administration (MDA) programmes, the treatment for onchocerciasis is ivermectin (trade name: Mectizan); infected people can be treated with two doses of ivermectin, six months apart, repeated every three years. The drug paralyses and kills the microfilariae causing fever, itching, and possibly oedema, arthritis and lymphadenopathy. Intense skin itching is eventually relieved, and the progression towards blindness is halted. In addition, while the drug does not kill the adult worms, it does prevent them for a limited time from producing additional offspring. The drug therefore prevents both morbidity and transmission for up to several months.
Ivermectin treatment is particularly effective because it only needs to be taken once or twice a year, needs no refrigeration, and has a wide margin of safety, with the result that it has been widely given by minimally trained community health workers.
Feeding bites have characteristic patterns and symptoms, a function of the feeding habits of the offending pest and the chemistry of its saliva.
Diagnosis is typically obtained by an allergist or other licensed practitioner performing a cold test. During the cold test, a piece of ice is held against the forearm, typically for 3–4 minutes. A positive result is a specific looking mark of raised red hives. The hives may be the shape of the ice, or it may radiate from the contact area of the ice." However, while these techniques assist in diagnosis, they do not provide information about temperature and stimulation time thresholds at which patients will start to develop symptoms."which is essential because it can establish disease severity and monitor the effectiveness of treatment.
Diagnosis is based on history given by patient, including recent medications.
The majority of individuals who receive a sting from an insect experience local reactions. It is estimated that 5-10% of individuals will experience a generalized systemic reaction that can involve symptoms ranging from hives to wheezing and even anaphylaxis. In the United States approximately 40 people die each year from anaphylaxis due to stinging insect allergy. Potentially life-threatening reactions occur in 3% of adults and 0.4–0.8% of children.
Solar urticaria can be difficult to diagnose, but its presence can be confirmed by the process of phototesting. There are several forms of these tests including photopatch tests, phototests, photoprovocation tests, and laboratory tests. All of these are necessary to determine the exact infliction that the patient is suffering from. Photopatch tests are patch tests conducted when it is believed that a patient is experiencing certain symptoms due to an allergy that will only occur when in contact with sunlight. After the procedure, the patient is given a low dosage of UVA radiation.
Another test known as a phototest is the most useful in identifying solar urticaria. In this test, one centimeter segments of skin are subject to varying amounts of UVA and UVB radiation in order to determine the specific dosage of the certain form of radiation that causes the urticaria to form. When testing for its less intense form (fixed solar urticaria), phototesting should be conducted only in the areas where the hives have appeared to avoid the possibility of getting false-negative results.
A third form of testing is the photoprovocation test which is used to identify disorders instigated by sun burns. The process of this test involves exposing one area of a patient's arm to certain dosage of UVB radiation and one area on the other arm to a certain dosage of UVA radiation. The amount of radiation that the patient is exposed to is equal to that "received in an hour of midday summer sun." If the procedure produces a rash, then the patient will undergo a biopsy. Finally, there are laboratory tests which generally involve procedures such as blood, urine, and fecal biochemical tests. In some situations, a skin biopsy may be performed.
Unlike most food allergies, it may be possible for the alpha-gal allergy to recede with time, as long as the person is not bitten by another tick. The recovery period can take anywhere from eight months to five years. This recovery potential is not confirmed. More research needs to be conducted to determine why some patients seem to recover and some do not.
With no particular affinity to any particular ethnic group, seen in all age groups and equally amongst males and females, the precise prevalence is not known.
Avoidance of antitoxins that may cause serum sickness is the best way to prevent serum sickness. Although, sometimes, the benefits outweigh the risks in the case of a life-threatening bite or sting. Prophylactic antihistamines or corticosteroids may be used concomitant with the antitoxin. Skin testing may be done beforehand in order to identify individuals who may be at risk of a reaction. Physicians should make their patients aware of the drugs or antitoxins to which they are allergic if there is a reaction. The physician will then choose an alternate antitoxin if it's appropriate or continue with prophylactic measures.
Prophylaxis and treatment with an anti-inflammatory agent may stop progression of the reaction. Oral aspirin or ibuprofen every four hours for a day or 60 mg of prednisone orally or intravenously has been used as an adjunctive treatment . However, steroids are generally of no benefit. Patients must be closely monitored for the potential complications (collapse and shock) and may require IV fluids to maintain adequate blood pressure. If available, meptazinol, an opioid analgesic of the mixed agonist/antagonist type, should be administered to reduce the severity of the reaction. Anti TNF-a may also be effective.
A traditional skin prick allergy test for allergy to meat may give a false negative answer. Blood tests for IgE response indicating alpha-gal allergy have not been approved by the U.S. Food and Drug Administration (FDA), and must usually be purchased by private individuals, but are available and are in use. Determination of specific IgE to alpha-gal testing is commercially available. The highest sensitivity is observed with skin and basophil activation tests with cetuximab which is, however, limited by its high costs.
FVRCP vaccines have also come under scrutiny of late due to possible risks to long term health. A study at Colorado State University noted an association between vaccination with parenteral (injectable) FVRCP vaccinations and development of antibodies against feline kidney tissue. Antibody development is hypothesized to develop when the immune system reacts to protein contaminants from the cell line used to cultivate vaccinial viruses. The cell line in question, the Crandell-Rees Feline Kidney (CRFK) cell line, was derived from a cat kidney. It is currently unknown whether this antibody development can lead to renal disease, though a recent follow-up study demonstrated evidence of inflammation on re-biopsy samples from some of the study cats.
Vaccines should be given in specific areas in order to: ease identification of which vaccine caused an adverse reaction, and ease removal of any vaccine-associated sarcoma.
In North America, vets adopted the practice of injecting specific limbs as far from the body as possible, with the rear "right for rabies", the rear "left for leukemia", and the right front shoulder (being careful to avoid the midline or interscapular space) for other vaccines (such as FVRCP).
This set of locations was not widely adopted outside of North America, and the international Vaccination Guidelines Group (VGG) made new recommendations that vaccines be administered:
- in subcutaneous (and not intramuscular) sites
- in the skin of the lateral thorax or abdomen (for easier excision of any FISS that occur)
- avoid the interscapular or intercostal regions (as more extensive surgical resection would be needed for sarcomas)
- in a different site on each occasion (either with general locations per species per year or diagrams of where administered on specific visit)
Nickel allergy can be confirmed by a properly trained health care provider based on the medical history, physical exam and a painless specialized patch test— when necessary. A significant number of people may self-diagnose, and not contact medical professionals, which could result in massive underreporting of the problem by scientific researchers.
Confirming the diagnosis of Ni-ACD specifically involves inducing the skin to demonstrate a rash where the chemicals are applied (a delayed type hypersensitivity reaction), evidence that the patient is exposed to nickel, and establishing that the reaction and the exposure explain the current rash/symptoms under question. The patch test plays a significant role in diagnosing ACD.
The patch test evokes a delayed, Type IV hypersensitivity reaction, which is a cell-mediated, antibody independent, immune response. Patch testing is the "gold standard" diagnostic tool for Ni-ACD. In this sense, a positive patch test to nickel establishes that the subject has been previously exposed and is therefore sensitized to nickel. It does not necessarily indicate that the patch reaction is the cause of the current clinical disease. A negative test demonstrates that the patient is sub-threshold, either minimally or not sensitized. Cumulatively, clinical reasoning and a patch test help determine if nickel could be the cause of a current dermatitis reaction.
Solar urticaria, due to its particular features, is considered to be a type of physical urticaria or light sensitivity. Physical urticaria arises from physical factors in the environment, which in the case of solar urticaria is UV radiation or light. SU may be classified based on the wavelength of the radiative energy that causes the allergic reaction; known as Harber's classification, six types have been identified in this system. Type I solar urticaria is caused by UVB (ultraviolet B) radiation, with wavelengths ranging from 290–320 nm. Type II is induced by UVA (ultraviolet A) radiation with wavelengths that can range from 320–400 nm. The wavelength range of type III and IV spans from 400 to 500 nm, while type V can be caused by UVB radiation to visible light (280–600 nm). Type VI has only been known to occur at 400 nm.
Another classification distinguishes two types. The first is a hypersensitivity caused by a reaction to photoallergens located only in people with SU; while the second is caused by photoallergens that can be found in both people with SU and people without it.
A subgroup of solar urticaria, fixed solar urticaria, has also been identified. It is a rare, less intense form of the disease with wheals (swollen areas of the skin) that affect certain, fixed areas of the body. Fixed solar urticaria is induced by a broad spectrum of radiative energy with wavelengths ranging from 300–700 nm.
Effective management of allergic diseases relies on the ability to make an accurate diagnosis. Allergy testing can help confirm or rule out allergies. Correct diagnosis, counseling, and avoidance advice based on valid allergy test results reduces the incidence of symptoms and need for medications, and improves quality of life. To assess the presence of allergen-specific IgE antibodies, two different methods can be used: a skin prick test, or an allergy blood test. Both methods are recommended, and they have similar diagnostic value.
Skin prick tests and blood tests are equally cost-effective, and health economic evidence shows that both tests were cost-effective compared with no test. Also, early and more accurate diagnoses save cost due to reduced consultations, referrals to secondary care, misdiagnosis, and emergency admissions.
Allergy undergoes dynamic changes over time. Regular allergy testing of relevant allergens provides information on if and how patient management can be changed, in order to improve health and quality of life. Annual testing is often the practice for determining whether allergy to milk, egg, soy, and wheat have been outgrown, and the testing interval is extended to 2–3 years for allergy to peanut, tree nuts, fish, and crustacean shellfish. Results of follow-up testing can guide decision-making regarding whether and when it is safe to introduce or re-introduce allergenic food into the diet.
Other rashes that occur in a widespread distribution can look like an id reaction. These include atopic dermatitis, contact dermatitis, dyshidrosis, photodermatitis, scabies and drug eruptions.
There are three main classifications of anaphylaxis. Anaphylactic shock is associated with systemic vasodilation that causes low blood pressure which is by definition 30% lower than the person's baseline or below standard values. Biphasic anaphylaxis is the recurrence of symptoms within 1–72 hours with no further exposure to the allergen. Reports of incidence vary, with some studies claiming as many as 20% of cases. The recurrence typically occurs within 8 hours. It is managed in the same manner as anaphylaxis. Pseudoanaphylaxis or anaphylactoid reactions are a type of anaphylaxis that does not involve an allergic reaction but is due to direct mast cell degranulation. Non-immune anaphylaxis is the current term used by the World Allergy Organization with some recommending that the old terminology no longer be used.
An allergy blood test is quick and simple, and can be ordered by a licensed health care provider ("e.g.", an allergy specialist), GP, or PED. Unlike skin-prick testing, a blood test can be performed irrespective of age, skin condition, medication, symptom, disease activity, and pregnancy. Adults and children of any age can take an allergy blood test. For babies and very young children, a single needle stick for allergy blood testing is often more gentle than several skin tests.
An allergy blood test is available through most laboratories. A sample of the patient's blood is sent to a laboratory for analysis, and the results are sent back a few days later. Multiple allergens can be detected with a single blood sample. Allergy blood tests are very safe, since the person is not exposed to any allergens during the testing procedure.
The test measures the concentration of specific IgE antibodies in the blood. Quantitative IgE test results increase the possibility of ranking how different substances may affect symptoms. A rule of thumb is that the higher the IgE antibody value, the greater the likelihood of symptoms. Allergens found at low levels that today do not result in symptoms can nevertheless help predict future symptom development. The quantitative allergy blood result can help determine what a patient is allergic to, help predict and follow the disease development, estimate the risk of a severe reaction, and explain cross-reactivity.
A low total IgE level is not adequate to rule out sensitization to commonly inhaled allergens. Statistical methods, such as ROC curves, predictive value calculations, and likelihood ratios have been used to examine the relationship of various testing methods to each other. These methods have shown that patients with a high total IgE have a high probability of allergic sensitization, but further investigation with allergy tests for specific IgE antibodies for a carefully chosen of allergens is often warranted.
Laboratory methods to measure specific IgE antibodies for allergy testing include enzyme-linked immunosorbent assay (ELISA, or EIA), radioallergosorbent test (RAST) and fluorescent enzyme immunoassay (FEIA).
In a person who died from anaphylaxis, autopsy may show an "empty heart" attributed to reduced venous return from vasodilation and redistribution of intravascular volume from the central to the peripheral compartment. Other signs are laryngeal edema, eosinophilia in lungs, heart and tissues, and evidence of myocardial hypoperfusion. Laboratory findings could detect increased levels of serum tryptase, increase in total and specific IgE serum levels.
The first-line therapy in ColdU, as recommended by EAACI/GA2 LEN/EDF/WAO guidelines, is symptomatic relief with second-generation H1- antihistamines. if standard doses are ineffective increasing up to 4-fold is recommended to control symptoms.
The second-generation H1-antihistamine, rupatadine, was found to significantly reduce the development of chronic cold urticaria symptom without an increase in adverse effects using 20 and 40 mg.
Allergy medications containing antihistamines such as diphenhydramine (Benadryl), cetirizine (Zyrtec), loratidine (Claritin), cyproheptadine (Periactin), and fexofenadine (Allegra) may be taken orally to prevent and relieve some of the hives (depending on the severity of the allergy). For those who have severe anaphylactic reactions, a prescribed medicine such as doxepin, which is taken daily, should help to prevent and/or lessen the likelihood of a reaction and thus, anaphylaxis. There are also topical antihistamine creams which are used to help relieve hives in other conditions, but there is not any documentation stating it will relieve hives induced by cold temperature.
Cold hives can result in a potentially serious, or even fatal, systemic reaction (anaphylactic shock). People with cold hives may have to carry an injectable form of epinephrine (like Epi-pen or Twinject) for use in the event of a serious reaction.
The best treatment for this allergy is avoiding exposure to cold temperature.
Studies have found that Omalizumab (Xolair) may be an effective and safe treatment to cold urticaria for patient who do not sufficiently respond to standard treatments.
Ebastine has been proposed as an approach to prevent acquired cold urticaria.
The term morbilliform refers to a rash that looks like measles. The rash consists of macular lesions that are red and usually 2–10 mm in diameter but may be confluent in places.
Patients with measles will have the rash but there are other syndromes and infections that will display the same symptom such as patients with Kawasaki disease, meningococcal petechiae or Waterhouse-Friderichsen syndrome, Dengue, congenital syphilis, rubella, Echovirus 9, drug hypersensitivity reactions (in particular with certain classes of antiretroviral drugs, such as abacavir and nevirapine, and also the antiepileptic drug phenytoin), or other conditions may also have a morbilliform rash.
One cause of morbilliform rash is an allergic reaction to transfused blood/blood components. In such a case, the skin lesions would develop within a few hours (Approx. 4hours) of transfusion along with pruritus. The condition may even present with other symptoms, such as conjunctival oedema, oedema in the lips and tongue, and even localised angioedema. On rare occasions, the condition may even escalate to anaphylactic shock where pulmonary restrictions are seen. The associated cause for this is a reaction against an allergen that is seldom identified during testing. Transfusing products with anti-IgA antibodies to IgA-deficient patients has also been a suspected cause for such reactions. Management usually relates to the stoppage of transfusion for around 30minutes, until given antihistamines take effect. Transfusion may even be continued after, if no further progression is seen.