Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Previous methods of diagnosis included HI, complement fixation, neutralization tests, and injecting the serum of infected individuals into mice. However, new research has introduced more efficient methods to diagnose KFDV. These methods include: nested RT-PCR, TaqMan-based real-time RT-PCR, and immunoglobin M antibodies detection by ELISA. The two methods involving PCR are able to function by attaching a primer to the NS-5 gene which is highly conserved among the genus to which KFDV belongs. The last method allows for the detections of anti-KFDV antibodies in patients.
The MAYV infection is characterized by fever, headache, myalgia, rash, prominent pain in the large joints, and association with rheumatic disease, but these signs and symptoms are unspecific to distinguish from other Arbovirus. The MAYV infection can be confirmed by laboratory testing such us virus isolation, RT-PCR and serology. The virus isolation in cell culture is effective during viremia. RT-PCR helps to identify virus. Serology tests detect antibodies like IgM and the most common assay is IgM-capture enzyme-linked immunosorbant assays (ELISA). This test usually requires a consecutive retest to confirm increasing titers. While the IgG detection is applied for epidemiology studies.
A range of laboratory investigations are performed, where possible, to diagnose the disease and assess its course and complications. The confidence of a diagnosis can be compromised by if laboratory tests are not available. One comprising factor is the number of febrile illnesses present in Africa, such as malaria or typhoid fever that could potentially exhibit similar symptoms, particularly for non-specific manifestations of Lassa fever. In cases with abdominal pain, in countries where Lassa is common, Lassa fever is often misdiagnosed as appendicitis and intussusception which delays treatment with the antiviral ribavirin. In West Africa, where Lassa is most prevalent, it is difficult for doctors to diagnose due to the absence of proper equipment to perform tests.
The FDA has yet to approve a widely validated laboratory test for Lassa, but there are tests that have been able to provide definitive proof of the presence of the LASV virus. These tests include cell cultures, PCR, ELISA antigen assays, plaque neutralization assays, and immunofluorescence essays. However, immunofluorescence essays provide less definitive proof of Lassa infection. An ELISA test for antigen and IgM antibodies give 88% sensitivity and 90% specificity for the presence of the infection. Other laboratory findings in Lassa fever include lymphopenia (low white blood cell count), thrombocytopenia (low platelets), and elevated aspartate aminotransferase levels in the blood. Lassa fever virus can also be found in cerebrospinal fluid.
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
Chikungunya is diagnosed on the basis of clinical, epidemiological, and laboratory criteria. Clinically, acute onset of high fever and severe joint pain would lead to suspicion of chikungunya. Epidemiological criteria consist of whether the individual has traveled to or spent time in an area in which chikungunya is present within the last twelve days (i.e.) the potential incubation period). Laboratory criteria include a decreased lymphocyte count consistent with viremia. However a definitive laboratory diagnosis can be accomplished through viral isolation, RT-PCR, or serological diagnosis.
The differential diagnosis may include infection with other mosquito-borne viruses, such as dengue or malaria, and infection with influenza. Chronic recurrent polyarthralgia occurs in at least 20% of chikungunya patients one year after infection, whereas such symptoms are uncommon in dengue.
Virus isolation provides the most definitive diagnosis, but takes one to two weeks for completion and must be carried out in biosafety level III laboratories. The technique involves exposing specific cell lines to samples from whole blood and identifying chikungunya virus-specific responses. RT-PCR using nested primer pairs is used to amplify several chikungunya-specific genes from whole blood, generating thousands to millions of copies of the genes in order to identify them. RT-PCR can also be used to quantify the viral load in the blood. Using RT-PCR, diagnostic results can be available in one to two days. Serological diagnosis requires a larger amount of blood than the other methods, and uses an ELISA assay to measure chikungunya-specific IgM levels in the blood serum. One advantage offered by serological diagnosis is that serum IgM is detectable from 5 days to months after the onset of symptoms, but drawbacks are that results may require two to three days, and false positives can occur with infection due to other related viruses, such as o'nyong'nyong virus and Semliki Forest virus.
Presently, there is no specific way to test for chronic signs and symptoms associated with Chikungunya fever although nonspecific laboratory findings such as C reactive protein and elevated cytokines can correlate with disease activity.
The CDC recommends screening some pregnant women even if they do not have symptoms of infection. Pregnant women who have traveled to affected areas should be tested between two and twelve weeks after their return from travel. Due to the difficulties with ordering and interpreting tests for Zika virus, the CDC also recommends that healthcare providers contact their local health department for assistance. For women living in affected areas, the CDC has recommended testing at the first prenatal visit with a doctor as well as in the mid-second trimester, though this may be adjusted based on local resources and the local burden of Zika virus. Additional testing should be done if there are any signs of Zika virus disease. Women with positive test results for Zika virus infection should have their fetus monitored by ultrasound every three to four weeks to monitor fetal anatomy and growth.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
The Coggins test (agar immunodiffusion) is a sensitive diagnostic test for equine infectious anemia developed by Dr. Leroy Coggins in the 1970s.
Currently, the US does not have an eradication program due to the low rate of incidence. However, many states require a negative Coggins test for interstate travel. In addition, most horse shows and events require a negative Coggins test. Most countries require a negative test result before allowing an imported horse into the country.
Horse owners should verify that all the horses at a breeding farm and or boarding facility have a negative Coggins test before using the services of the facility. A Coggins test should be done on an annual basis. Tests every 6 months are recommended if there is increased traveling.
A number of various diseases may present with symptoms similar to those caused by a clinical West Nile virus infection. Those causing neuroinvasive disease symptoms include the enterovirus infection and bacterial meningitis. Accounting for differential diagnoses is a crucial step in the definitive diagnosis of WNV infection. Consideration of a differential diagnosis is required when a patient presents with unexplained febrile illness, extreme headache, encephalitis or meningitis. Diagnostic and serologic laboratory testing using polymerase chain reaction (PCR) testing and viral culture of CSF to identify the specific pathogen causing the symptoms, is the only currently available means of differentiating between causes of encephalitis and meningitis.
Preliminary diagnosis is often based on the patient's clinical symptoms, places and dates of travel (if patient is from a nonendemic country or area), activities, and epidemiologic history of the location where infection occurred. A recent history of mosquito bites and an acute febrile illness associated with neurologic signs and symptoms should cause clinical suspicion of WNV.
Diagnosis of West Nile virus infections is generally accomplished by serologic testing of blood serum or cerebrospinal fluid (CSF), which is obtained via a lumbar puncture. Initial screening could be done using the ELISA technique detecting immunoglobulins in the sera of the tested individuals.
Typical findings of WNV infection include lymphocytic pleocytosis, elevated protein level, reference glucose and lactic acid levels, and no erythrocytes.
Definitive diagnosis of WNV is obtained through detection of virus-specific antibody IgM and neutralizing antibodies. Cases of West Nile virus meningitis and encephalitis that have been serologically confirmed produce similar degrees of CSF pleocytosis and are often associated with substantial CSF neutrophilia.
Specimens collected within eight days following onset of illness may not test positive for West Nile IgM, and testing should be repeated. A positive test for West Nile IgG in the absence of a positive West Nile IgM is indicative of a previous flavavirus infection and is not by itself evidence of an acute West Nile virus infection.
If cases of suspected West Nile virus infection, sera should be collected on both the acute and
convalescent phases of the illness. Convalescent specimens should be collected 2–3 weeks after acute specimens.
It is common in serologic testing for cross-reactions to occur among flaviviruses such as dengue virus (DENV) and tick-borne encephalitis virus; this necessitates caution when evaluating serologic results of flaviviral infections.
Four FDA-cleared WNV IgM ELISA kits are commercially available from different manufacturers in the U.S., each of these kits is indicated for use on serum to aid in the presumptive laboratory diagnosis of WNV infection in patients with clinical symptoms of meningitis or encephalitis. Positive WNV test results obtained via use of these kits should be confirmed by additional testing at a state health department laboratory or CDC.
In fatal cases, nucleic acid amplification, histopathology with immunohistochemistry, and virus culture of autopsy tissues can also be useful. Only a few state laboratories or other specialized laboratories, including those at CDC, are capable of doing this specialized testing.
Control of the "Mastomys" rodent population is impractical, so measures focus on keeping rodents out of homes and food supplies, encouraging effective personal hygiene, storing grain and other foodstuffs in rodent-proof containers, and disposing of garbage far from the home to help sustain clean households . Gloves, masks, laboratory coats, and goggles are advised while in contact with an infected person, to avoid contact with blood and body fluids. These issues in many countries are monitored by a department of public health. In less developed countries, these types of organizations may not have the necessary means to effectively control outbreaks.
Researchers at the USAMRIID facility, where military biologists study infectious diseases, have a promising vaccine candidate. They have developed a replication-competent vaccine against Lassa virus based on recombinant vesicular stomatitis virus vectors expressing the Lassa virus glycoprotein. After a single intramuscular injection, test primates have survived lethal challenge, while showing no clinical symptoms.
Although infection of avian reovirus is spread worldwide, it is rarely the sole cause of a disease. For chickens, the most common manifestation of the disease is joint/limb lameness. Confirming infection of avian reovirus can be detected through an ELISA test by using and observing the expression of σC and σB proteins. However, isolating and identifying reoviruses from tissue samples is very time consuming. Isolation is most successfully attained through inoculation of material into chick embryo cultures or fertile chicken eggs. Inoculation of embryonic eggs through the yolk sac has shown that the virus usually kills the embryos within 5 or 6 days post inoculation. Analyzing the samples, the embryos appeared hemorrhagic and necrotic lesions on the liver were present. (Jones, Onunkwo, 1978). There have also been approaches to identify avian reoviruses molecularly by observing infected tissues with dot-blot hybridization, PCR, and a combination of PCR and RFLP. This combination allows for the reovirus strain to be typed.
Early symptoms of EVD may be similar to those of other diseases common in Africa, including malaria and dengue fever. The symptoms are also similar to those of other viral hemorrhagic fevers such as Marburg virus disease.
The complete differential diagnosis is extensive and requires consideration of many other infectious diseases such as typhoid fever, shigellosis, rickettsial diseases, cholera, sepsis, borreliosis, EHEC enteritis, leptospirosis, scrub typhus, plague, Q fever, candidiasis, histoplasmosis, trypanosomiasis, visceral leishmaniasis, measles, and viral hepatitis among others.
Non-infectious diseases that may result in symptoms similar to those of EVD include acute promyelocytic leukemia, hemolytic uremic syndrome, snake envenomation, clotting factor deficiencies/platelet disorders, thrombotic thrombocytopenic purpura, hereditary hemorrhagic telangiectasia, Kawasaki disease, and warfarin poisoning.
For infants with suspected congenital Zika virus disease, the CDC recommends testing with both serologic and molecular assays such as RT-PCR, IgM ELISA and plaque reduction neutralization test (PRNT). RT-PCR of the infants serum and urine should be performed in the first two days of life. Newborns with a mother who was potentially exposed and who have positive blood tests, microcephaly or intracranial calcifications should have further testing including a thorough physical investigation for neurologic abnormalities, dysmorphic features, splenomegaly, hepatomegaly, and rash or other skin lesions. Other recommended tests are cranial ultrasound, hearing evaluation, and eye examination. Testing should be done for any abnormalities encountered as well as for other congenital infections such as syphilis, toxoplasmosis, rubella, cytomegalovirus infection, lymphocytic choriomeningitis virus infection, and herpes simplex virus. Some tests should be repeated up to 6 months later as there can be delayed effects, particularly with hearing.
A vaccine is available in the UK and Europe, however in laboratory tests it is not possible to distinguish between antibodies produced as a result of vaccination and those produced in response to infection with the virus. Management also plays an important part in the prevention of EVA.
Diagnosis relies on viral isolation from tissues, or serological testing with an ELISA. Other methods of diagnosis include Nucleic Acid Testing (NAT), cell culture, and IgM antibody assays. As of September 2016, the Kenya Medical Research Institute (KEMRI) has developed a product called Immunoline, designed to diagnose the disease in humans much faster than in previous methods.
A blood test is the only way to confirm a case of Ross River Fever. Several types of blood tests may be used to examine antibody levels in the blood. Tests may either look for simply elevated antibodies (which indicate some sort of infection), or specific antibodies to the virus.
Japanese encephalitis is diagnosed by commercially available tests detecting JE virus-specific IgM antibodies in serum and /or cerebrospinal fluid, for example by IgM capture ELISA.
JE virus IgM antibodies are usually detectable 3 to 8 days after onset of illness and persist for 30 to 90 days, but longer persistence has been documented. Therefore, positive IgM antibodies occasionally may reflect a past infection or vaccination. Serum collected within 10 days of illness onset may not have detectable IgM, and the test should be repeated on a convalescent sample. For patients with JE virus IgM antibodies, confirmatory neutralizing antibody testing should be performed.
Confirmatory testing in the US is only available at CDC and a few specialized reference laboratories. In fatal cases, nucleic acid amplification, and virus culture of autopsy tissues can be useful. Viral antigen can be shown in tissues by indirect fluorescent antibody staining.
Diagnosis of the oropouche infection is done through classic and molecular virology techniques. These include:
1. Virus isolation attempt in new born mice and cell culture (Vero Cells)
2. Serological assay methods, such as HI (hemagglutination inhibition), NT (neutralization test), and CF (complement fixation test) tests and in-house-enzyme linked immunosorbent assay for total immunoglobulin, IgM, and IgG detection using convalescent sera (this obtained from recovered patients and is rich in antibodies against the infectious agent)
3. Reverse transcription polymerase chain reaction (RT-PCR) and real time RT-PCR for genome detection in acute samples (sera, blood, and viscera of infected animals)
Clinical diagnosis of oropouche fever is hard to perform due to the nonspecific nature of the disease, in many causes it can be confused with dengue fever or other arbovirus illness.
A Zika virus infection might be suspected if symptoms are present and an individual has traveled to an area with known Zika virus transmission. Zika virus can only be confirmed by a laboratory test of body fluids, such as urine or saliva, or by blood test.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
Possible non-specific laboratory indicators of EVD include a low platelet count; an initially decreased white blood cell count followed by an increased white blood cell count; elevated levels of the liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and abnormalities in blood clotting often consistent with disseminated intravascular coagulation (DIC) such as a prolonged prothrombin time, partial thromboplastin time, and bleeding time. Filovirions, such as EBOV, may be identified by their unique filamentous shapes in cell cultures examined with electron microscopy, but this method cannot distinguish the various filoviruses.
The specific diagnosis of EVD is confirmed by isolating the virus, detecting its RNA or proteins, or detecting antibodies against the virus in a person's blood. Isolating the virus by cell culture, detecting the viral RNA by polymerase chain reaction (PCR) and detecting proteins by enzyme-linked immunosorbent assay (ELISA) are methods best used in the early stages of the disease and also for detecting the virus in human remains. Detecting antibodies against the virus is most reliable in the later stages of the disease and in those who recover. IgM antibodies are detectable two days after symptom onset and IgG antibodies can be detected 6 to 18 days after symptom onset. During an outbreak, isolation of the virus via cell culture methods is often not feasible. In field or mobile hospitals, the most common and sensitive diagnostic methods are real-time PCR and ELISA. In 2014, with new mobile testing facilities deployed in parts of Liberia, test results were obtained 3–5 hours after sample submission. In 2015 a rapid antigen test which gives results in 15 minutes was approved for use by WHO. It is able to confirm Ebola in 92% of those affected and rule it out in 85% of those not affected.
Laboratory blood tests can identify evidence of chikungunya or other similar viruses such as dengue and Zika. Blood test may confirm the presence of IgM and IgG anti-chikungunya antibodies. IgM antibodies are highest 3 to 5 weeks after the beginning of symptoms and will continue be present for about 2 months.
A vaccine has been conditionally approved for use in animals in the US. It has been shown that knockout of the NSs and NSm nonstructural proteins of this virus produces an effective vaccine in sheep as well.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.