Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The World Health Organization defines a maternal near-miss case as "a woman who nearly died but survived a complication that occurred during pregnancy, childbirth or within 42 days of termination of pregnancy."
The management of PROM remains controversial, and depends largely on the gestational age of the fetus and other complicating factors. The risks of quick delivery (induction of labor) vs. watchful waiting in each case is carefully considered before deciding on a course of action.
As of 2012, the Royal College of Obstetricians and Gynaecologists advised, based on expert opinion and not clinical evidence, that attempted delivery during maternal instability, increases the rates of both fetal death and maternal death, unless the source of instability is an intrauterine infection.
In all women with PROM, the age of the fetus, its position in the uterus, and its wellbeing should be evaluated. This can be done with ultrasound, electronic fetal heart rate monitoring, and uterine activity monitoring. This will also show whether or not uterine contractions are happening which may be a sign that labor is starting. Signs and symptoms of infection should be closely monitored, and, if not already done, a group B streptococcus (GBS) culture should be collected.
At any age, if the fetal well-being appears to be compromised, or if intrauterine infection is suspected, the baby should be delivered quickly by artificially stimulating labor (induction of labor).
Maternal mortality is a sentinel event to assess the quality of a health care system. The standard indicator is the Maternal Mortality Ratio, defined as the ratio of the number of maternal deaths per 100,000 live births. Due to improved health care the ratio has been declining steadily in developed countries. For example, in the UK 1952-1982 the ratio was halving every 10 years. In the European Union the ratio has now stabilized at around 10 to 20.
The small number of cases makes the evaluation of maternal mortality practically impossible Historically, the study of negative outcomes have been highly successful in preventing their causes, this strategy of prevention therefore faces difficulties when if the number of negative outcome drop to low levels. In the UK, for example, the most dramatic decline in maternal death was achieved in Rochdale, an industrial town in the poorest area of England. In 1928 the town had a Maternal Mortality Ratio of over 900 per 100,000 live births, more than double the national average of the time. An enquiry into the causes of the deaths reduced the ratio to 280 per 100,000 pregnancies by 1934, only six years later, then the lowest in the country.
The very low figures of maternal mortality have therefore stimulated an interest in investigating cases of life-threatening obstetric morbidity or maternal near miss. There are several advantages of investigating near miss events over events with fatal outcome
- near miss are more common than maternal deaths
- their review is likely to yield useful information on the same pathways that lead to severe morbidity and death,
- investigating the care received may be less threatening to providers because the woman survived
- one can learn from the women themselves since they can be interviewed about the care they received.
- all near misses should be interpreted as free lessons and opportunities to improve the quality of service provision
- it is also clear that maternal deaths merely are the tip of the iceberg of maternal disability. For every woman who dies, many more will survive but often suffer from lifelong disabilities.
The growing interest is reflected in an increasing number of systematic reviews on the prevalence of near miss. The studies and reviews span
- analytic attempts to define the concept more strictly,
- descriptive efforts to measure and quantify new indicators (prevalence) of near-miss for different geographical regions etc.
- explanatory efforts of the leading cause for morbidity
A woman's risk of having a baby with chromosomal abnormalities increases with her age. Down syndrome is the most common chromosomal birth defect, and a woman's risk of having a baby with Down syndrome is:
- At age 20, 1 in 1,441
- At age 25, 1 in 1,383
- At age 30, 1 in 959
- At age 35, 1 in 338
- At age 40, 1 in 84
- At age 45, 1 in 32
- At age 50, 1 in 44
The following tests should only be used if the diagnosis is still unclear after the standard tests above.
- Ultrasound: Ultrasound can measure the amount of fluid still in the uterus surrounding the fetus. If the fluid levels are low, PROM is more likely. This is helpful in cases when the diagnosis is not certain, but is not, by itself, definitive.
- Immune-chromatological tests are helpful if negative to rule-out PROM, but are not that helpful if positive because the false-positive rate is 19-30%.
- Indigo carmine dye test: In this test, a needle is used to inject indigo carmine dye (blue) into the amniotic fluid that remains in the uterus through the abdominal wall. In the case of PROM, blue dye can be seen on a stained tampon or pad after about 15–30 minutes. This method can be used to definitively make a diagnosis, but is rarely done because it is invasive and increases risk of infection. But, can be helpful if the diagnosis is still unclear after the above evaluations have been done.
It is unclear if different methods of assessing the fetus in a woman with PPROM affects outcomes.
Pre-eclampsia can mimic and be confused with many other diseases, including chronic hypertension, chronic renal disease, primary seizure disorders, gallbladder and pancreatic disease, immune or thrombotic thrombocytopenic purpura, antiphospholipid syndrome and hemolytic-uremic syndrome. It must be considered a possibility in any pregnant woman beyond 20 weeks of gestation. It is particularly difficult to diagnose when preexisting disease such as hypertension is present. Women with acute fatty liver of pregnancy may also present with elevated blood pressure and protein in the urine, but differ by the extent of liver damage. Other disorders that can cause high blood pressure include thyrotoxicosis, pheochromocytoma, and drug misuse.
A woman's fertility peaks lasts during the twenties and first half of thirties, after which it starts to decline, with advanced maternal age causing an increased risk of female infertility.
According to Henri Leridon, PhD, an epidemiologist with the French Institute of Health and Medical Research, of women trying to get pregnant, without using fertility drugs or in vitro fertilization:
- At age 30
- 75% will have a conception ending in a live birth within one year
- 91% will have a conception ending in a live birth within four years.
- At age 35
- 66% will have a conception ending in a live birth within one year
- 84% will have a conception ending in a live birth within four years.
- At age 40
- 44% will have a conception ending in a live birth within one year
- 64% will have a conception ending in a live birth within four years.
There have been many assessments of tests aimed at predicting pre-eclampsia, though no single biomarker is likely to be sufficiently predictive of the disorder. Predictive tests that have been assessed include those related to placental perfusion, vascular resistance, kidney dysfunction, endothelial dysfunction, and oxidative stress. Examples of notable tests include:
- Doppler ultrasonography of the uterine arteries to investigate for signs of inadequate placental perfusion. This test has a high negative predictive value among those individuals with a history of prior pre-eclampsia.
- Elevations in serum uric acid (hyperuricemia) is used by some to "define" pre-eclampsia, though it has been found to be a poor predictor of the disorder. Elevated levels in the blood (hyperuricemia) are likely due to reduced uric acid clearance secondary to impaired kidney function.
- Angiogenic proteins such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) and anti-angiogenic proteins such as soluble fms-like tyrosine kinase-1 (sFlt-1) have shown promise for potential clinical use in diagnosing pre-eclampsia, though evidence is sufficient to recommend a clinical use for these markers.
- Recent studies have shown that looking for podocytes (specialized cells of the kidney) in the urine has the potential to aid in the prediction of preeclampsia. Studies have demonstrated that finding podocytes in the urine may serve as an early marker of and diagnostic test for preeclampsia.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
The Kleihauer–Betke test is a blood test used to measure the amount of foetal hemoglobin transferred from a foetus to its mother's bloodstream. It takes advantage of the differential resistance of foetal hemoglobin to acid. A standard blood smear is prepared from the mother's blood, and exposed to an acid bath. This removes adult hemoglobin, but not foetal hemoglobin, from the red blood cells. Subsequent staining, using Shepard's method, makes fetal cells (containing foetal hemoglobin) appear rose-pink in color, while adult red blood cells are only seen as "ghosts". 2000 cells are counted under the microscope and a percentage of foetal to maternal cells is calculated.
Foetal-maternal haemorrhage can also be diagnosed by flow cytometry, using anti-foetal hemoglobin antibodies (anti-HbF).
The effects of high blood pressure during pregnancy vary depending on the disorder and other factors. Preeclampsia does not in general increase a woman's risk for developing chronic hypertension or other heart-related problems. Women with normal blood pressure who develop preeclampsia after the 20th week of their first pregnancy, short-term complications--including increased blood pressure--usually go away within about 6 weeks after delivery.
Some women, however, may be more likely to develop high blood pressure or other heart disease later in life. More research is needed to determine the long-term health effects of hypertensive disorders in pregnancy and to develop better methods for identifying, diagnosing, and treating women at risk for these conditions.
Even though high blood pressure and related disorders during pregnancy can be serious, most women with high blood pressure and those who develop preeclampsia have successful pregnancies. Obtaining early and regular prenatal care is the most important thing you can do for you and your baby.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
Testing for HDN involves blood work from both mother and father, and may also include assessment with amniocentesis and Middle Cerebral Artery scans.
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
MCA scans Middle cerebral artery - peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with IUT.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
A study by the Agency for Healthcare Research and Quality (AHRQ) found that of the 3.8 million births that occurred in the United States in 2011, approximately 6.1% (231,900) were diagnosed with low birth weight (<2,500 g). Approximately 49,300 newborns (1.3%) weighed less than 1,500 grams (VLBW). Infants born at low birth weight are at a higher risk for developing neonatal infection.
Placental abruption is suspected when a pregnant mother has sudden localized abdominal pain with or without bleeding. The fundus may be monitored because a rising fundus can indicate bleeding. An ultrasound may be used to rule out placenta praevia but is not diagnostic for abruption. The diagnosis is one of exclusion, meaning other possible sources of vaginal bleeding or abdominal pain have to be ruled out in order to diagnose placental abruption. Of note, use of magnetic resonance imaging has been found to be highly sensitive in depicting placental abruption, and may be considered if no ultrasound evidence of placental abruption is present, especially if the diagnosis of placental abruption would change management.
If a small amount of bleeding is seen in early pregnancy a physician may request:
- A quantitative human chorionic gonadotropin (hCG) blood test to confirm the pregnancy or assist in diagnosing a potential miscarriage
- Transvaginal pelvic ultrasonography to confirm that the pregnancy is not outside of the uterus
- Blood type and Rh test to rule out hemolytic disease of the newborn
For bleeding seen in later pregnancy tests may include:
- Complete blood count (CBC) and blood type and screen
- Ultrasound to determine placental location
- Kleihauer-Betke (KB) test especially if there was maternal trauma
Pregnant women who ate more sweets, such as candy and processed juices, in early pregnancy were at higher risk of gaining excessive weight. A healthy, well-balanced diet during pregnancy can also help to minimize some pregnancy symptoms such as nausea and constipation.
If ongoing and rapid haemorrhage is occurring then immediate delivery of the foetus may be indicated if the fetus is sufficiently developed. If the haemorrhage has already occurred and now stopped, an inutero transfusion of red cells to the foetus may be recommended.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
LGA and macrosomia cannot be diagnosed until after birth, as it is impossible to accurately estimate the size and weight of a child in the womb. Babies that are large for gestational age throughout the pregnancy may be suspected because of an ultrasound, but fetal weight estimations in pregnancy are quite imprecise. For non-diabetic women, ultrasounds and care providers are equally inaccurate at predicting whether or not a baby will be big. If an ultrasound or a care provider predicts a big baby, they will be wrong half the time.
Although big babies are born to only 1 out of 10 women, the 2013 Listening to Mothers Survey found that 1 out of 3 American women were told that their babies were too big. In the end, the average birth weight of these suspected “big babies” was only . In the end, care provider concerns about a suspected big baby were the fourth-most common reason for an induction (16% of all inductions), and the fifth-most common reason for a C-section (9% of all C-sections). This treatment is not based on current best evidence.
Research has consistently shown that, as far as birth complications are concerned, the care provider’s perception that a baby is big is more harmful than an actual big baby by itself. In a 2008 study, researchers compared what happened to women who were suspected of having a big baby to what happened to women who were not suspected of having a big baby—but who ended up having one. In the end, women who were suspected of having a big baby (and actually had one) had a triple in the induction rate, more than triple the C-section rate, and a quadrupling of the maternal complication rate, compared to women who were not suspected of having a big baby but who had one anyway.
Complications were most often due to C-sections and included bleeding (hemorrhage), wound infection, wound separation, fever, and need for antibiotics. There were no differences in shoulder dystocia between the two groups. In other words, when a care provider “suspected” a big baby (as compared to not knowing the baby was going to be big), this tripled the C-section rates and made mothers more likely to experience complications, without improving the health of babies.