Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People are continually exposed to metals in the environment. Medical tests can detect metals often, but this is to be expected and alone is not evidence that a person is poisoned. Metal screening tests should not be used unless there is reason to believe that a person has had excessive exposure to metals. People should seek medical testing for poisoning only if they are concerned for a particular reason, and physicians should consider a patient's history and physical examination before conducting tests to detect metals.
Chelation therapy is a medical procedure that involves the administration of chelating agents to remove heavy metals from the body. Chelating agents are molecules that have multiple electron-donating groups, which can form stable coordination complexes with metal ions. Complexation prevents the metal ions from reacting with molecules in the body, and enable them to be dissolved in blood and eliminated in urine. It should only be used in people who have a diagnosis of metal intoxication. That diagnosis should be validated with tests done in appropriate biological samples.
Chelation therapy is administered under very careful medical supervision due to various inherent risks. When the therapy is administered properly, the chelation drugs have significant side effects. Chelation administered inappropriately can cause neurodevelopmental toxicity, increase risk of developing cancer, and cause death; chelation also removes essential metal elements and requires measures to prevent their loss.
The current mainstay of manganism treatment is levodopa and chelation with EDTA. Both have limited and at best transient efficacy. Replenishing the deficit of dopamine with levodopa has been shown to initially improve extrapyramidal symptoms, but the response to treatment goes down after 2 or 3 years, with worsening condition of the same patients noted even after 10 years since last exposure to manganese. Enhanced excretion of manganese prompted by chelation therapy brings its blood levels down but the symptoms remain largely unchanged, raising questions about efficacy of this form of treatment.
Increased ferroportin protein expression in human embryonic kidney (HEK293) cells is associated with decreased intracellular manganese concentration and attenuated cytotoxicity, characterized by the reversal of Mn-reduced glutamate uptake and diminished lactate dehydrogenase (LDH) leakage.
DIagnosis - I'm guessing in addition to evaluation (and rule out of) symptoms mentioned previously, there should maybe be mention of a blood test here since it's already been described as a way to gauge concentration -- "high blood concentrations lead to ____" stated in previous section so we can conclude that it can be measured in the blood and there's some existing accepted level of what level equals "high" as opposed to "normal".
Please delete, thank you and my apologies, logic is all I've got.
Nitric acid test and paper chromatography test are used in the detection of argemone oil.Paper chromatography test is the most sensitive test.
For precious animals ;
- Repeat screening, case management to abate sources
- Medical and environmental evaluation,
- veterinary evaluation, chelation, case management
- If necessary, veterinary hospitalization, immediate chelation, case management.
The mainstays of treatment are removal from the source of lead and, for precious animals who have significantly high blood lead levels or who have symptoms of poisoning, chelation therapy with a chelating agent.
Diagnosis is primarily anecdotal, that is, it depends upon a good occupational history. Diagnosis of metal fume fever can be easily missed because the complaints are non-specific, resemble a number of other common illnesses, and presentation occurs typically 2–4 hours after the exposure. When respiratory symptoms are prominent, metal fume fever may be confused with acute bronchitis or pneumonia. The diagnosis is based primarily upon a history of exposure to metal oxide fumes. Cain and Fletcher (2010) report a case of metal fume fever that was diagnosed only by taking a full occupational history and by close collaboration between primary and secondary health care personnel.
Physical symptoms vary among persons exposed, depending largely upon the stage in the course of the syndrome during which examination occurs. Patients may present with wheezing or crackles in the lungs. They typically have an increased white blood cell count, and urine, blood plasma and skin zinc levels may (unsurprisingly) be elevated. Chest X-ray abnormalities may also be present.
An interesting feature of metal fume fever involves rapid adaptation to the development of the syndrome following repeated metal oxide exposure. Workers with a history of recurrent metal fume fever often develop a tolerance to the fumes. This tolerance, however, is transient, and only persists through the work week. After a weekend hiatus, the tolerance has usually disappeared. This phenomenon of tolerance is what led to the name "Monday Fever".
In 2006, approximately 700 metal fume exposures were reported to the United States Poison control center. The American Welding Society estimated that 2500 employees in the steel industry develop metal fume fever in the US each year and that the majority of the cases are not reported.
Prevention of metal fume fever in workers who are at risk (such as welders) involves avoidance of direct contact with potentially toxic fumes, improved engineering controls (exhaust ventilation systems), personal protective equipment (respirators), and education of workers regarding the features of the syndrome itself and proactive measures to prevent its development.
In some cases, the product's design may be changed so as to eliminate the use of risky metals. NiCd rechargeable batteries are being replaced by NiMH. These contain other toxic metals, such as chromium, vanadium and cerium. Cadmium is often replaced by other metals. Zinc or nickel plating can be used instead of cadmium plating, and brazing filler alloys now rarely contain cadmium.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
In humans, heavy metal poisoning is generally treated by the administration of chelating agents.
These are chemical compounds, such as (calcium disodium ethylenediaminetetraacetate) that convert heavy metals to chemically inert forms that can be excreted without further interaction with the body. Chelates are not without side effects and can also remove beneficial metals from the body. Vitamin and mineral supplements are sometimes co-administered for this reason.
Soils contaminated by heavy metals can be remediated by one or more of the following technologies: isolation; immobilization; toxicity reduction; physical separation; or extraction. "Isolation" involves the use of caps, membranes or below-ground barriers in an attempt to quarantine the contaminated soil. "Immobilization" aims to alter the properties of the soil so as to hinder the mobility of the heavy contaminants. "Toxicity reduction" attempts to oxidise or reduce the toxic heavy metal ions, via chemical or biological means into less toxic or mobile forms. "Physical separation" involves the removal of the contaminated soil and the separation of the metal contaminants by mechanical means. "Extraction" is an on or off-site process that uses chemicals, high-temperature volatization, or electrolysis to extract contaminants from soils. The process or processes used will vary according to contaminant and the characteristics of the site.
Those routes include contaminated air, water, soil, and food, and also, for birds ingestion of grit (lead shots, lead bullets).ingestion of paints,materials that are left out from the factories like batteries etc.
Iron deficiency can be avoided by choosing appropriate soil for the growing conditions (e.g., avoid growing acid loving plants on lime soils), or by adding well-rotted manure or compost. If iron deficit chlorosis is suspected then check the pH of the soil with an appropriate test kit or instrument. Take a soil sample at surface and at depth. If the pH is over seven then consider soil remediation that will lower the pH toward the 6.5 - 7 range. Remediation includes: i) adding compost, manure, peat or similar organic matter (warning. Some retail blends of manure and compost have pH in the range 7 - 8 because of added lime. Read the MSDS if available. Beware of herbicide residues in manure. Source manure from a certified organic source.) ii) applying Ammonium Sulphate as a Nitrogen fertilizer (acidifying fertilizer due to decomposition of ammonium ion to nitrate in the soil and root zone) iii) applying elemental Sulphur to the soil (oxidizes over the course of months to produce sulphate/sulphite and lower pH). Note: adding acid directly e.g. sulphuric/hydrochloric/citric acid is dangerous as you may mobilize metal ions in the soil that are toxic and otherwise bound. Iron can be made available immediately to the plant by the use of iron sulphate or iron chelate compounds. Two common iron chelates are Fe EDTA and Fe EDDHA. Iron sulphate (Iron(II)_sulfate) and iron EDTA are only useful in soil up to PH 7.1 but they can be used as a foliar spray (Foliar_feeding). Iron EDDHA is useful up to PH 9 (highly alkaline) but must be applied to the soil and in the evening to avoid photodegradation. EDTA in the soil may mobilize Lead, EDDHA does not appear to.
The standard of care is discontinuation of the environmental exposure, and chelation therapy (with EDTA or maybe better, DMSA).
Withdrawal of the contaminated cooking oil is the most important initial step. Bed rest with leg elevation and a protein-rich diet are useful. Supplements of calcium, antioxidants (vitamin C and E), and thiamine and other B vitamins are commonly used. Corticosteroids and antihistaminics such as promethazine have been advocated by some investigators, but demonstrated efficacy is lacking. Diuretics are used universally but caution must be exercised not to deplete the intravascular volume unless features of frank congestive cardiac failure are present, as oedema is mainly due to increased capillary permeability. Cardiac failure is managed by bed rest, salt restriction, digitalis and diuretics. Pneumonia is treated with appropriate antibiotics. Renal failure may need dialysis therapy and complete clinical recovery is seen. Glaucoma may need operative intervention, but generally responds to medical management.
Rapid diagnosis is important to attempt to prevent further damage to the brain and further neurologic deficits. It is a diagnosis of exclusion, so a full work up for other possible etiologies (hepatic, uremic, infectious, oncologic) should be performed. Screening for heavy metals, as well as other toxins, should be done immediately as those are some of the most common causes and the patient can then remove themselves from the dangerous environment. In addition, a full examination of blood (CBC) and metabolites (CMP) should be done.
Exposure to cobalt metal dust is most common in the fabrication of tungsten carbide. Another potential source is wear and tear of metal-on-metal hip prostheses; however, this is a relatively uncommon phenomenon with 18 reported cases being documented in the medical literature.
Research is being done by organizations such as NINDS (National Institute of Neurological Disorders and Stroke) on what substances can cause encephalopathy, why they do this, and eventually how to protect, treat, and cure the brain from this condition.
Acrodynia is a condition of pain and dusky pink discoloration in the hands and feet most often seen in children chronically exposed to heavy metals, especially mercury.
The word "acrodynia" is derived from the Greek, where ακρος means "end" or "" and οδυνη means pain. As such, it might be (erroneously) used to indicate that a patient has pain in the hands or feet. However, acrodynia is a disease rather than a symptom. The condition is known by a large number of other names including pink disease, hydrargyria, mercurialism, erythredema, erythredema polyneuropathy, Bilderbeck's, Selter's, Swift's and Swift-Feer disease.
Cobalt poisoning is intoxication caused by excessive levels of cobalt in the body. Cobalt is an essential element for health in animals in minute amounts as a component of Vitamin B. A deficiency of cobalt, which is very rare, is also potentially lethal, leading to pernicious anemia.
In epidemiology, environmental diseases are diseases that can be directly attributed to environmental factors (as distinct from genetic factors or infection). Apart from the true monogenic genetic disorders, environmental diseases may determine the development of disease in those genetically predisposed to a particular condition. Stress, physical and mental abuse, diet, exposure to toxins, pathogens, radiation, and chemicals found in almost all personal care products and household cleaners are possible causes of a large segment of non-hereditary disease. If a disease process is concluded to be the result of a combination of genetic and "environmental factor" influences, its etiological origin can be referred to as having a multifactorial pattern.
There are many different types of environmental disease including:
- Lifestyle disease such as cardiovascular disease, diseases caused by substance abuse such as alcoholism, and smoking-related disease
- Disease caused by physical factors in the environment, such as skin cancer caused by excessive exposure to ultraviolet radiation in sunlight
- Disease caused by exposure to toxic or irritant chemicals in the environment such as toxic metals
==Environmental Diseases vs. Pollution-
Related Diseases==
Environmental diseases are a direct result from the environment. This includes diseases caused by substance abuse, exposure to toxic chemicals, and physical factors in the environment, like UV radiation from the sun, as well as genetic predisposition. Meanwhile, pollution-related diseases are attributed to exposure to toxins in the air, water, and soil. Therefore all pollution-related disease are environmental diseases, but not all environmental diseases are pollution-related diseases.
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
Diagnosis of clinical poisoning is generally made by documenting exposure, identifying the neurologic signs, and analyzing serum for alpha-mannosidase activity and swainsonine.
In mule deer, clinical signs of locoism are similar to chronic wasting disease. Histological signs of vacuolation provide a differential diagnosis.
Sub-clinical intoxication has been investigated in cattle grazing on "Astragalus mollissimus". As the estimated intake of swainsonine increased, blood serum alpha-mannosidase activity and albumin decreased, and alkaline phosphatase and thyroid hormone increased.
Prevention of Kashin–Beck disease has a long history. Intervention strategies were mostly based on one of the three major theories of its cause.
Selenium supplementation, with or without additional antioxidant therapy (vitamin E and vitamin C) has been reported to be successful, but in other studies no significant decrease could be shown compared to a control group. Major drawbacks of selenium supplementation are logistic difficulties (daily or weekly intake, drug supply), potential toxicity (in case of less controlled supplementation strategies), associated iodine deficiency (that should be corrected before selenium supplementation to prevent further deterioration of thyroid status) and low compliance. The latter was certainly the case in Tibet, where a selenium supplementation has been implemented from 1987 to 1994 in areas of high endemicity.
With the mycotoxin theory in mind, backing of grains before storage was proposed in Guangxi province, but results are not reported in international literature. Changing from grain source has been reported to be effective in Heilongjiang province and North Korea.
With respect to the role of drinking water, changing of water sources to deep well water has been reported to decrease the X-ray metaphyseal detection rate in different settings.
In general, the effect of preventive measures however remains controversial, due to methodological problems (no randomised controlled trials), lack of documentation or, as discussed above, due to inconsistency of results.
Symptoms include leaves turning yellow or brown in the margins between the veins which may remain green, while young leaves may appear to be bleached. Fruit would be of poor quality and quantity. Any plant may be affected, but raspberries and pears are particularly susceptible, as well as most acid-loving plants such as azaleas and camellias.
People may be exposed to toxic chemicals or similar dangerous substances from pharmaceutical products, consumer products, the environment, or in the home or at work. Many toxic tort cases arise either from the use of medications, or through exposure at work.