Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Detection of any metastases of thyroid cancer can be performed with a full body scintigraphy using iodine-131.
Cancer staging is the process of determining the extent of the development of a cancer. The TNM staging system is usually used to classify stages of cancers but not of the brain.
The MACIS system of estimating the prognosis of papillary thyroid cancer was developed by Clive S. Grant at the Mayo Clinic, and was based on careful evaluation of a large group of patients. It is probably the most reliable staging method available.
It assigns scores to the main factors involved, and uses the sum of this score to calculate the prognosis:
Most patients fall into the low-risk category (MACIS score less than 6.0) and are cured of the cancer at the time of surgery.
Children with multiple lung metastases and/or a miliary aspect still have an excellent long-term prognosis if given adequate treatment.
Based on overall cancer staging into stages I to IV, papillary thyroid cancer has a 5-year survival rate of 100 percent for stages I and II, 93 percent for stage III and 51 percent for stage IV.
Hurthle cell thyroid cancer is often considered a variant of follicular cell carcinoma. Hurthle cell forms are more likely than follicular carcinomas to be bilateral and multifocal and to metastasize to lymph nodes. Like follicular carcinoma, unilateral hemithyroidectomy is performed for non-invasive disease, and total thyroidectomy for invasive disease.
Some studies have shown that thyroglobulin (Tg) testing combined with neck ultrasound is more productive in finding disease recurrence than full- or whole-body scans (WBS) using radioactive iodine. However, current protocol (in the USA) suggests a small number of clean annual WBS are required before relying on Tg testing plus neck ultrasound. When needed, whole body scans consist of withdrawal from thyroxine medication and/or injection of recombinant human Thyroid stimulating hormone (TSH). In both cases, a low iodine diet regimen must also be followed to optimize the takeup of the radioactive iodine dose. Low dose radioiodine of a few millicuries is administered. Full body nuclear medicine scan follows using a gamma camera. Scan doses of radioactive iodine may be I or I.
Recombinant human TSH, commercial name Thyrogen, is produced in cell culture from genetically engineered hamster cells.
Blood tests may be done prior to or in lieu of a biopsy. The possibility of a nodule which secretes thyroid hormone (which is less likely to be cancer) or hypothyroidism is investigated by measuring thyroid stimulating hormone (TSH), and the thyroid hormones thyroxine (T4) and triiodothyronine (T3).
Tests for serum thyroid autoantibodies are sometimes done as these may indicate autoimmune thyroid disease (which can mimic nodular disease).
A thyroid scan using a radioactive iodine uptake test can be used in viewing the thyroid. A scan using iodine-123 showing a hot nodule, accompanied by a lower than normal TSH, is strong evidence that the nodule is not cancerous, as most hot nodules are benign.
The first step in diagnosing a thyroid neoplasm is a physical exam of the neck area. If any abnormalities exist, a doctor needs to be consulted. A family doctor may conduct blood tests, an ultrasound, and nuclear scan as steps to a diagnosis. The results from these tests are then read by an endocrinologist who will determine what problems the thyroid has.
Hyperthyroidism and hypothyroidism are two conditions that often arise from an abnormally functioning thyroid gland. These occur when the thyroid is producing too much or too little thyroid hormone respectively.
Thyroid nodules are a major presentation of thyroid neoplasms, and are diagnosed by ultrasound guided fine needle aspiration (USG/FNA) or frequently by thyroidectomy (surgical removal and subsequent histological examination). FNA is the most cost-effective and accurate method of obtaining a biopsy sample. As thyroid cancer can take up iodine, radioactive iodine is commonly used to treat thyroid carcinomas, followed by TSH suppression by high-dose thyroxine therapy.
Nodules are of particular concern when they are found in those under the age of 20. The presentation of benign nodules at this age is less likely, and thus the potential for malignancy is far greater.
Treatment of a thyroid nodule depends on many things including size of the nodule, age of the patient, the type of thyroid cancer, and whether or not it has spread to other tissues in the body.
If the nodule is benign, patients may receive thyroxine therapy to suppress thyroid-stimulating hormone and should be reevaluated in 6 months. However, if the benign nodule is inhibiting the patient's normal functions of life; such as breathing, speaking, or swallowing, the thyroid may need to be removed.
Sometimes only part of the thyroid is removed in an attempt to avoid causing hypothyroidism. There's still a risk of hypothyroidism though, as the remaining thyroid tissue may not be able to produce enough hormones in the long-run.
If the nodule is malignant or has indeterminate cytologic features, it may require surgery. A thyroidectomy is a medium risk surgery that can result complications if not performed correctly. Problems with the voice, nerve or muscular damage, or bleeding from a lacerated blood vessel are rare but serious complications that may occur. After removing the thyroid, the patient must be supplied with a replacement hormone for the rest of their life. This is commonly a daily oral medication prescribed by their endocrinologist.
Radioactive iodine-131 is used in patients with papillary or follicular thyroid cancer for ablation of residual thyroid tissue after surgery and for the treatment of thyroid cancer. Patients with medullary, anaplastic, and most Hurthle cell cancers do not benefit from this therapy. External irradiation may be used when the cancer is unresectable, when it recurs after resection, or to relieve pain from bone metastasis.
Autoantibodies to the thyroid gland may be detected in various disease states. There are several anti-thyroid antibodies, including anti-thyroglobulin antibodies (TgAb), anti-microsomal/anti-thyroid peroxidase antibodies (TPOAb), and TSH receptor antibodies (TSHRAb).
- Elevated anti-thryoglobulin (TgAb) and anti-thyroid peroxidase antibodies (TPOAb) can be found in patients with Hashimoto's thyroiditis, the most common autoimmune type of hypothyroidism. TPOAb levels have also been found to be elevated in patients who present with subclinical hypothyroidism (where TSH is elevated, but free T4 is normal), and can help predict progression to overt hypothyroidism. The American Association Thyroid Association thus recommends measuring TPOAb levels when evaluating subclinical hypothyroidism or when trying to identify whether nodular thyroid disease is due to autoimmune thyroid disease.
- When the etiology of hyperthyroidism is not clear after initial clinical and biochemical evaluation, measurement of TSH receptor antibodies (TSHRAb) can help make the diagnosis. In Grave's disease, TSHRAb levels are elevated as they are responsible for activating the TSH receptor and causing increased thyroid hormone production.
A medical biopsy refers to the obtaining of a tissue sample for examination under the microscope or other testing, usually to distinguish cancer from noncancerous conditions. Thyroid tissue may be obtained for biopsy by fine needle aspiration (FNA) or by surgery.
Fine needle aspiration has the advantage of being a brief, safe, outpatient procedure that is safer and less expensive than surgery and does not leave a visible scar. Needle biopsies became widely used in the 1980s, but it was recognized that the accuracy of identification of cancer was good, but not perfect. The accuracy of the diagnosis depends on obtaining tissue from all of the suspicious areas of an abnormal thyroid gland. The reliability of fine needle aspiration is increased when sampling can be guided by ultrasound, and over the last 15 years, this has become the preferred method for thyroid biopsy in North America.
Screening for hypothyroidism is performed in the newborn period in many countries, generally using TSH. This has led to the early identification of many cases and thus the prevention of developmental delay. It is the most widely used newborn screening test worldwide. While TSH-based screening will identify the most common causes, the addition of T testing is required to pick up the rarer central causes of neonatal hypothyroidism. If T determination is included in the screening done at birth, this will identify cases of congenital hypothyroidism of central origin in 1:16,000 to 1:160,000 children. Considering that these children usually have other pituitary hormone deficiencies, early identification of these cases may prevent complications.
In adults, widespread screening of the general population is a matter of debate. Some organizations (such as the United States Preventive Services Task Force) state that evidence is insufficient to support routine screening, while others (such as the American Thyroid Association) recommend either intermittent testing above a certain age in both sexes or only in women. Targeted screening may be appropriate in a number of situations where hypothyroidism is common: other autoimmune diseases, a strong family history of thyroid disease, those who have received radioiodine or other radiation therapy to the neck, those who have previously undergone thyroid surgery, those with an abnormal thyroid examination, those with psychiatric disorders, people taking amiodarone or lithium, and those with a number of health conditions (such as certain heart and skin conditions). Yearly thyroid function tests are recommended in people with Down syndrome, as they are at higher risk of thyroid disease.
An adrenal "incidentaloma" is an adrenal tumor found by coincidence without clinical symptoms or suspicion. It is one of the more common unexpected findings revealed by computed tomography (CT), magnetic resonance imaging (MRI), or ultrasonography.
In these cases, a dexamethasone suppression test is often used to detect cortisol excess, and metanephrines or catecholamines for excess of these hormones. Tumors under 3 cm are generally considered benign and are only treated if there are grounds for a diagnosis of Cushing's syndrome or pheochromocytoma. Radiodensity gives a clue in estimating malignancy risk, wherein a tumor with 10 Hounsfield units or less on an unenhanced CT is probably a lipid-rich adenoma.
Hormonal evaluation includes:
- 1-mg overnight dexamethasone suppression test
- 24-hour urinary specimen for measurement of fractionated metanephrines and catecholamines
- Blood plasma aldosterone concentration and plasma renin activity, "if hypertension is present"
On CT scan, benign adenomas typically are of low radiographic density (due to fat content) and show rapid washout of contrast medium (50% or more of the contrast medium washes out at 10 minutes). If the hormonal evaluation is negative and imaging suggests benign, followup should be considered with imaging at 6, 12, and 24 months and repeat hormonal evaluation yearly for 4 years
Parathyroid carcinoma is sometimes diagnosed during surgery for primary hyperparathyroidism. If the surgeon suspects carcinoma based on severity or invasion of surrounding tissues by a firm parathyroid tumor, aggressive excision is performed, including the thyroid and surrounding tissues as necessary.
Agents such as calcimimetics (for example, cinacalcet) are used to mimic calcium and are able to activate the parathyroid calcium-sensing receptor (making the parathyroid gland "think" we have more calcium than we actually do), therefore lowering the calcium level, in an attempt to decrease the hypercalcemia.
During pregnancy, the thyroid gland must produce 50% more thyroid hormone to provide enough thyroid hormone for the developing fetus and the expectant mother. In pregnancy, free thyroxine levels may be lower than anticipated due to increased binding to thyroid binding globulin and decreased binding to albumin. They should either be corrected for the stage of pregnancy, or total thyroxine levels should be used instead for diagnosis. TSH values may also be lower than normal (particularly in the first trimester) and the normal range should be adjusted for the stage of pregnancy.
In pregnancy, subclinical hypothyroidism is defined as a TSH between 2.5 and 10 mIU/l with a normal thyroxine level, while those with TSH above 10 mIU/l are considered to be overtly hypothyroid even if the thyroxine level is normal. Antibodies against TPO may be important in making decisions about treatment, and should, therefore, be determined in women with abnormal thyroid function tests.
Determination of TPO antibodies may be considered as part of the assessment of recurrent miscarriage, as subtle thyroid dysfunction can be associated with pregnancy loss, but this recommendation is not universal, and presence of thyroid antibodies may not predict future outcome.
Immunohistochemistry is performed as additional test. The strong positive expression of cytokeratin 19 was showed in primary SCTC, and negative in metastatic SCTC.
There are no specific radiological tests for SCTC verification. However these tests might be useful for identification of tumor borders and in planning of surgery.
In overt primary hyperthyroidism, TSH levels are low and T and T levels are high. Subclinical hyperthyroidism is a milder form of hyperthyroidism characterized by low or undetectable serum TSH level, but with a normal serum free thyroxine level. Although the evidence for doing so is not definitive, treatment of elderly persons having subclinical hyperthyroidism could reduce the incidence of atrial fibrillation. There is also an increased risk of bone fractures (by 42%) in people with subclinical hyperthyroidism; there is insufficient evidence to say whether treatment with antithyroid medications would reduce that risk.
Parathyroid cancer occurs in midlife at the same rate in men and women.
Conditions that appear to result in an increased risk of parathyroid cancer include multiple endocrine neoplasia type 1, autosomal dominant familial isolated hyperparathyroidism and hyperparathyroidism-jaw tumor syndrome (which also is hereditary). Parathyroid cancer has also been associated with external radiation exposure, but, most reports describe an association between radiation and the more common parathyroid adenoma.
A non-minimally invasive Hürthle cell carcinoma is typically treated by a total thyroidectomy followed by radioactive iodine therapy. A Hürthle cell adenoma or a minimally invasive tumor can be treated by a thyroid lobectomy, although some surgeons will perform a total thyroidectomy to prevent the tumor from reappearing and metastasizing.
A modified radical neck dissection may be performed for clinically positive lymph nodes.
Measuring the level of thyroid-stimulating hormone (TSH), produced by the pituitary gland (which in turn is also regulated by the hypothalamus's TSH Releasing Hormone) in the blood is typically the initial test for suspected hyperthyroidism. A low TSH level typically indicates that the pituitary gland is being inhibited or "instructed" by the brain to cut back on stimulating the thyroid gland, having sensed increased levels of T and/or T in the blood. In rare circumstances, a low TSH indicates primary failure of the pituitary, or temporary inhibition of the pituitary due to another illness (euthyroid sick syndrome) and so checking the T and T is still clinically useful.
Measuring specific antibodies, such as anti-TSH-receptor antibodies in Graves' disease, or anti-thyroid peroxidase in Hashimoto's thyroiditis — a common cause of hypothyroidism — may also contribute to the diagnosis.
The diagnosis of hyperthyroidism is confirmed by blood tests that show a decreased thyroid-stimulating hormone (TSH) level and elevated T and T levels. TSH is a hormone made by the pituitary gland in the brain that tells the thyroid gland how much hormone to make. When there is too much thyroid hormone, the TSH will be low. A radioactive iodine uptake test and thyroid scan together characterizes or enables radiologists and doctors to determine the cause of hyperthyroidism. The uptake test uses radioactive iodine injected or taken orally on an empty stomach to measure the amount of iodine absorbed by the thyroid gland. Persons with hyperthyroidism absorb much more iodine than healthy persons which includes the radioactive iodine which is easy to measure. A thyroid scan producing images is typically conducted in connection with the uptake test to allow visual examination of the over-functioning gland.
Thyroid scintigraphy is a useful test to characterize (distinguish between causes of) hyperthyroidism, and this entity from thyroiditis. This test procedure typically involves two tests performed in connection with each other: an iodine uptake test and a scan (imaging) with a gamma camera. The uptake test involves administering a dose of radioactive iodine (radioiodine), traditionally iodine-131 (I), and more recently iodine-123 (I). Iodine-123 may be the preferred radionuclide in some clinics due to its more favorable radiation dosimetry (i.e. less radiation dose to the patient per unit administered radioactivity) and a gamma photon energy more amenable to imaging with the gamma camera. For the imaging scan, I-123 is considered an almost ideal isotope of iodine for imaging thyroid tissue and thyroid cancer metastasis.
Typical administration involves a pill or liquid containing sodium iodide (NaI) taken orally, which contains a small amount of iodine-131, amounting to perhaps less than a grain of salt. A 2-hour fast of no food prior to and for 1 hour after ingesting the pill is required. This low dose of radioiodine is typically tolerated by individuals otherwise allergic to iodine (such as those unable to tolerate contrast mediums containing larger doses of iodine such as used in CT scan, intravenous pyelogram (IVP), and similar imaging diagnostic procedures). Excess radioiodine that does not get absorbed into the thyroid gland is eliminated by the body in urine. Some patients may experience a slight allergic reaction to the diagnostic radioiodine and may be given an antihistamine.
The patient returns 24 hours later to have the level of radioiodine "uptake" (absorbed by the thyroid gland) measured by a device with a metal bar placed against the neck, which measures the radioactivity emitting from the thyroid. This test takes about 4 minutes while the uptake % is accumulated (calculated) by the machine software. A scan is also performed, wherein images (typically a center, left and right angle) are taken of the contrasted thyroid gland with a gamma camera; a radiologist will read and prepare a report indicating the uptake % and comments after examining the images. Hyperthyroid patients will typically "take up" higher than normal levels of radioiodine. Normal ranges for RAI uptake are from 10-30%.
In addition to testing the TSH levels, many doctors test for T, Free T, T, and/or Free T for more detailed results. Typical adult limits for these hormones are: TSH (units): 0.45 - 4.50 uIU/mL; T Free/Direct (nanograms): 0.82 - 1.77 ng/dl; and T (nanograms): 71 - 180 ng/dl. Persons with hyperthyroidism can easily exhibit levels many times these upper limits for T and/or T. See a complete table of normal range limits for thyroid function at the thyroid gland article.
In hyperthyroidism CK-MB (Creatine kinase) is usually elevated.
There are three main treatments for Hürthle cell adenomas. Once the adenoma is detected most often the nodules removed to prevent the cells from later metastisizing. A total thyroidectomy is often performed, this results in a complete removal of the thyroid. Some patients may only have half of their thyroid removed, this is known as a thyroid lobectomy. Another treatment option includes pharmacological suppression of thyroid hormone. The thyroid gland is responsible for producing the thyroid hormones triiodothyronine (T3) and thyroxine (T4). Patients with suppressed thyroid function often require oral thyroid replacement (e.g. levothyroxine) in order to maintain normal thyroid hormone levels. The final treatment option is RAI abaltion (radioactive iodine ablation). This treatment option is used to destroy infected thyroid cells after total thyroidectomy. This treatment does not change prognosis of disease, but will diminish the recurrence rate. Also, Hürthle cells do not respond well to RAI. However, often doctors suggest this treatment to patients with Hürthle cell adenoma and Hürthle cell carcinoma because some Hürthle cells will respond and it will kill remaining tissue.
As with hyperthyroidism, TSH is suppressed. Both free and serum (or total) T3 and T4 are elevated. An elevation in thyroid hormone levels is suggestive of thyroid storm when accompanied by signs of severe hyperthyroidism but is not diagnostic as it may also correlate with uncomplicated hyperthyroidism. Moreover, serum T3 may be normal in critically ill patients due to decreased conversion of T4 to T3. Other potential abnormalities include the following:
- Hyperglycemia likely due to catecholamine-mediated effects on insulin release and metabolism as well as increased glycogenolysis, evolving into hypoglycemia when glycogen stores are depleted
- Elevated aspartate aminotransferase (AST), bilirubin and lactate dehydrogenase (LDH)
- Hypercalcemia and elevated alkaline phosphatase due to increased bone resorption
- Elevated white blood cell count
The diagnosis of thyroid storm is based on the presence of symptoms consistent with severe hyperthyroidism, as outlined in the Signs and symptoms section above. Multiple approaches have been proposed to calculate the probability of thyroid storm based on clinical criteria, however, none have been universally adopted by clinicians. For instance, Burch and Wartofsky published the Burch-Wartofsky point scale (BWPS) in 1993, assigning a numerical value based on the presence of specific signs and symptoms organized within the following categories: temperature, cardiovascular dysfunction (including heart rate and presence of atrial fibrillation or congestive heart failure), central nervous system (CNS) dysfunction, gastrointestinal or liver dysfunction and presence of a precipitating event. A Burch-Wartofsky score below 25 is not suggestive of thyroid storm whereas 25 to 45 suggests impending thyroid storm and greater than 45 suggests current thyroid storm. Alternatively, the Japanese Thyroid Association (JTA) criteria, derived from a large cohort of patients with thyroid storm in Japan and published in 2012, provide a qualitative method to determine the probability of thyroid storm. The JTA criteria separate the diagnosis of thyroid storm into definite versus suspected based on the specific combination of signs and symptoms a patient exhibits and require elevated free triiodothyronine (T3) or free thyroxine (T4) for definite thyroid storm.