Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Azoospermia is usually detected in the course of an infertility investigation. It is established on the basis of two semen analysis evaluations done at separate occasions (when the seminal specimen after centrifugation shows no sperm under the microscope) and requires a further work-up.
The investigation includes a history, a physical examination including a thorough evaluation of the scrotum and testes, laboratory tests, and possibly imaging. History includes the general health, sexual health, past fertility, libido, and sexual activity. Past exposure to a number of agents needs to be queried including medical agents like hormone/steroid therapy, antibiotics, 5-ASA inhibitors (sulfasalazine), alpha-blockers, 5 alpha-reductase inhibitors, chemotherapeutic agents, pesticides, recreational drugs (marijuana, excessive alcohol), and heat exposure of the testes. A history of surgical procedures of the genital system needs to be elicited. The family history needs to be assessed to look for genetic abnormalities.
Congenital absence of the vas deferens may be detectable on physical examination and can be confirmed by a transrectal ultrasound (TRUS). If confirmed genetic testing for cystic fibrosis is in order. Transrectal ultrasound can also assess azoospermia caused by obstruction, or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Retrograde ejaculation is diagnosed by examining a postejaculatory urine for presence of sperm after making it alkaline and centifuging it.
Low levels of LH and FSH with low or normal testosterone levels are indicative of pretesticular problems, while high levels of gonadotropins indicate testicular problems. However, often this distinction is not clear and the differentiation between obstructive versus non-obstructive azoospermia may require a testicular biopsy. On the other hand, "In azoospermic men with a normal ejaculate volume, FSH serum level greater than two times the upper limit of the normal range is reliably diagnostic of dysfunctional spermatogenesis and, when found, a diagnostic testicular biopsy is usually unnecessary, although no consensus exists in this matter." But also, extremely high levels of FSH (>45 ID/mL) have been correlated with successful microdissection testicular sperm extraction.
Serum inhibin-B weakly indicates presence of sperm cells in the testes, raising chances for successfully achieving pregnancy through testicular sperm extraction (TESE), although the association is not very substantial, having a sensitivity of 0.65 (95% confidence interval [CI]: 0.56–0.74) and a specificity of 0.83 (CI: 0.64–0.93) for prediction the presence of sperm in the testes in non-obstructive azoospermia.
Seminal plasma proteins TEX101 and ECM1 were recently proposed for the differential diagnosis of azoospermia forms and subtypes, and for prediction of TESE outcome. Mount Sinai Hospital, Canada started clinical trial to test this hypothesis in 2016.
It is recommended that men primary hypopituitarism may be linked to a genetic cause, a genetic evaluation is indicated in men with azoospermia due to primary hypopituitarism. Azoospermic men with testicular failure are advised to undergo karyotype and Y-micro-deletion testing.
In cases where the individual is being evaluated for ambiguous genitalia, such as a small phallus, hypospadias, or labioscrotal folds, exploratory surgery may be used to determine if male and/or female internal genitalia is present.
A standard karyotype can be completed to cytogenetically determine that an individual with a partial or complete male phenotype has a XX genotype.
FISH analysis determines the presence or absence of the SRY gene.
Localization of the SRY gene can by determined using fluorescent "in situ" hybridization.
Indicators include two testes which have not descended the inguinal canal, although this is seen in a minority of XX males, and the absence of Müllerian tissue.
CAIS can only be diagnosed in normal phenotypic females. It is not usually suspected unless the menses fail to develop at puberty, or an inguinal hernia presents during premenarche. As many as 1–2% of prepubertal girls that present with an inguinal hernia will also have CAIS.
A diagnosis of CAIS or Swyer syndrome can be made in utero by comparing a karyotype obtained by amniocentesis with the external genitalia of the fetus during a prenatal ultrasound. Many infants with CAIS do not experience the normal, spontaneous neonatal testosterone surge, a fact which can be diagnostically exploited by obtaining baseline luteinizing hormone and testosterone measurements, followed by a human chorionic gonadotropin (hGC) stimulation test.
The main differentials for CAIS are complete gonadal dysgenesis (Swyer syndrome) and Müllerian agenesis (Mayer-Rokitansky-Kuster-Hauser syndrome or MRKH). Both CAIS and Swyer syndrome are associated with a 46,XY karyotype, whereas MRKH is not; MRKH can thus be ruled out by checking for the presence of a Y chromosome, which can be done either by fluorescence in situ hybridization (FISH) analysis or on full karyotype. Swyer syndrome is distinguished by poor breast development and shorter stature. The diagnosis of CAIS is confirmed when androgen receptor (AR) gene sequencing reveals a mutation, although up to 5% of individuals with CAIS do not have an AR mutation.
Up until the 1990s, a CAIS diagnosis was often hidden from the affected individual and / or family. It is current practice to disclose the genotype at the time of diagnosis, particularly when the affected girl is at least of adolescent age. If the affected individual is a child or infant, it is generally up to the parents, often in conjunction with a psychologist, to decide when to disclose the diagnosis.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
Unfortunately, the number of differentials to consider for PAIS is particularly large. Prompt diagnosis is particularly urgent when a child is born with ambiguous genitalia, as some causes are associated with potentially life-threatening adrenal crises. Determination of testosterone, testosterone precursors and dihydrotestosterone (DHT) at baseline and / or after human chorionic gonadotropin (hCG) stimulation can be used to exclude such defects in androgen biosynthesis.
Approximately one half of all 46,XY individuals born with ambiguous genitalia will not receive a definitive diagnosis. Androgen receptor (AR) gene mutations cannot be found in 27% to 72% of individuals with PAIS. As a result, genetic analysis can be used to confirm a diagnosis of PAIS, but it cannot be used to rule out PAIS. Evidence of abnormal androgen binding in a genital skin fibroblast study has long been the gold standard for the diagnosis of PAIS, even when an AR mutation is not present. However, some cases of PAIS, including AR-mutant-positive cases, will show normal androgen binding. A family history consistent with X-linked inheritance is more commonly found in AR-mutant-positive cases than AR-mutant-negative cases.
The use of dynamic endocrine tests is particularly helpful in isolating a diagnosis of PAIS. One such test is the human chorionic gonadotropin (hCG) stimulation test. If the gonads are testes, there will be an increase in the level of serum testosterone in response to the hCG, regardless of testicular descent. The magnitude of the testosterone increase can help differentiate between androgen resistance and gonadal dysgenesis, as does evidence of a uterus on ultrasound examination. Testicular function can also be assessed by measuring serum anti-Müllerian hormone levels, which in turn can further differentiate PAIS from gonadal dysgenesis and bilateral anorchia.
Another useful dynamic test involves measuring the response to exogenous steroids; individuals with AIS show a decreased response in serum sex hormone binding globulin (SHBG) after a short term administration of anabolic steroids. Two studies indicate that measuring the response in SHBG after the administration of stanozolol could help to differentiate individuals with PAIS from those with other causes of ambiguous genitalia, although the response in individuals with predominantly male phenotypes overlaps somewhat with the response in normal males.
Some strategies suggested or proposed for avoiding male infertility include the following:
- Avoiding smoking as it damages sperm DNA
- Avoiding heavy marijuana and alcohol use.
- Avoiding excessive heat to the testes.
- Maintaining optimal frequency of coital activity: sperm counts can be depressed by daily coital activity and sperm motility may be depressed by coital activity that takes place too infrequently (abstinence 10–14 days or more).
- Wearing a protective cup and jockstrap to protect the testicles, in any sport such as baseball, football, cricket, lacrosse, hockey, softball, paintball, rodeo, motorcross, wrestling, soccer, karate or other martial arts or any sport where a ball, foot, arm, knee or bat can come into contact with the groin.
- Diet: Healthy diets (i.e. the Mediterranean diet) rich in such nutrients as omega-3 fatty acids, some antioxidants and vitamins, and low in saturated fatty acids (SFAs) and trans-fatty acids (TFAs) are inversely associated with low semen quality parameters. In terms of food groups, fish, shellfish and seafood, poultry, cereals, vegetables and fruits, and low-fat dairy products have been positively related to sperm quality. However, diets rich in processed meat, soy foods, potatoes, full-fat dairy products, coffee, alcohol and sugar-sweetened beverages and sweets have been inversely associated with the quality of semen in some studies. The few studies relating male nutrient or food intake and fecundability also suggest that diets rich in red meat, processed meat, tea and caffeine are associated with a lower rate of fecundability. This association is only controversial in the case of alcohol. The potential biological mechanisms linking diet with sperm function and fertility are largely unknown and require further study.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
Common hormonal test include determination of FSH and testosterone levels. A blood sample can reveal genetic causes of infertility, e.g. Klinefelter syndrome, a Y chromosome microdeletion, or cystic fibrosis.
MAIS is only diagnosed in normal phenotypic males, and is not typically investigated except in cases of male infertility. MAIS has a mild presentation that often goes unnoticed and untreated; even with semenological, clinical and laboratory data, it can be difficult to distinguish between men with and without MAIS, and thus a diagnosis of MAIS is not usually made without confirmation of an AR gene mutation. The androgen sensitivity index (ASI), defined as the product of luteinizing hormone (LH) and testosterone (T), is frequently raised in individuals with all forms of AIS, including MAIS, although many individuals with MAIS have an ASI in the normal range. Testosterone levels may be elevated despite normal levels of luteinizing hormone. Conversion of testosterone (T) to dihydrotestosterone (DHT) may be impaired, although to a lesser extent than is seen in 5α-reductase deficiency. A high ASI in a normal phenotypic male, especially when combined with azoospermia or oligospermia, decreased secondary terminal hair, and/or impaired conversion of T to DHT, can be indicative of MAIS, and may warrant genetic testing.
Preimplantation genetic diagnosis (PGD or PIGD) refers to genetic profiling of embryos prior to implantation (as a form of embryo profiling), and sometimes even of oocytes prior to fertilization. When used to screen for a specific genetic sequence, its main advantage is that it avoids selective pregnancy termination, as the method makes it highly likely that a selected embryo will be free of the condition under consideration.
In the UK, AIS appears on a list of serious genetic diseases that may be screened for via PGD. Some ethicists, clinicians, and intersex advocates have argued that screening embryos to specifically exclude intersex traits are based on social and cultural norms as opposed to medical necessity.
Low testosterone can be identified through a simple blood test performed by a laboratory, ordered by a health care provider. Blood for the test must be taken in the morning hours, when levels are highest, as levels can drop by as much as 13% during the day and all normal reference ranges are based on morning levels. However, low testosterone in the absence of any symptoms does not clearly need to be treated.
Normal total testosterone levels depend on the man's age but generally range from 240–950 ng/dL (nanograms per deciliter) or 8.3-32.9 nmol/L (nanomoles per liter). Some men with normal total testosterone have low free or bioavailable testosterone levels which could still account for their symptoms. Men with low serum testosterone levels should have other hormones checked, particularly luteinizing hormone to help determine why their testosterone levels are low and help choose the most appropriate treatment (most notably, testosterone is usually not appropriate for secondary or tertiary forms of male hypogonadism, in which the LH levels are usually reduced).
Treatment is often prescribed for total testosterone levels below 230 ng/dL with symptoms. If the serum total testosterone level is between 230 and 350 ng/dL, free or bioavailable testosterone should be checked as they are frequently low when the total is marginal.
The standard range given is based off widely varying ages and, given that testosterone levels naturally decrease as humans age, age-group specific averages should be taken into consideration when discussing treatment between doctor and patient. In men, testosterone falls approximately 1 to 3 percent each year.
- Blood testing
A position statement by the Endocrine Society expressed dissatisfaction with most assays for total, free, and bioavailable testosterone. In particular, research has questioned the validity of commonly administered assays of free testosterone by radioimmunoassay. The free androgen index, essentially a calculation based on total testosterone and sex hormone-binding globulin levels, has been found to be the worst predictor of free testosterone levels and should not be used. Measurement by equilibrium dialysis or mass spectroscopy is generally required for accurately results, particularly for free testosterone which is present normal in such small concentrations.
Pre- and post-testicular azoospermia are frequently correctible, while testicular azoospermia is usually permanent. In the former the cause of the azoospermia needs to be considered and it opens up possibilities to manage this situation directly. Thus men with azoospermia due to hyperprolactinemia may resume sperm production after treatment of hyperprolactinemia or men whose sperm production is suppressed by exogenous androgens are expected to produce sperm after cessation of androgen intake. In situations where the testes are normal but unstimulated, gonadotropin therapy can be expected to induce sperm production.
A major advancement in recent years has been the introduction of IVF with ICSI which allows successful fertilization even with immature sperm or sperm obtained directly from testicular tissue. IVF-ICSI allows for pregnancy in couples where the man has irreversible testicular azoospermia as long as it is possible to recover sperm material from the testes. Thus men with non-mosaic Klinefelter's syndrome have fathered children using IVF-ICSI. Pregnancies have been achieved in situations where azoospermia was associated with cryptorchism and sperm where obtained by testicular sperm extraction (TESE).
In men with posttesticular azoospermia a number of approaches are available. For obstructive azoospermia IVF-ICSI or surgery can be used and individual factors need to be considered for the choice of treatment. Medication may be helpful for retrograde ejaculation.
The development of intracytoplasmic sperm injection made conception a possibility for patients with a variety of male infertility conditions, including globozoospermia. However, fertility rates with this approach are still low, and research is ongoing into how this can be improved.
It has been found that treating globozoospermia with ICSI along with oocyte activation by calcium ionophore (an ion carrier used to increase intracellular calcium is more likely to result in conception than ICSI alone. Another promising treatment area also looks at causing oocyte activation in conjunction with ICSI, this time using spermatic binding-proteins, phospholipase C zeta (PLCζ) and postacrosomal sheath WW domain binding protein (PAWP).
Testicular biopsy would confirm the absence of spermatozoa. Seminal plasma protein TEX101 was proposed for differentiation of Sertoli cell-only syndrome from maturation arrest and hypospermatogenesis. And a clinical trial at Mount Sinai Hospital, Canada started testing this hypothesis in 2016.
If both partners are young and healthy and have been trying to conceive for one year without success, a visit to a physician or women's health nurse practitioner (WHNP) could help to highlight potential medical problems earlier rather than later. The doctor or WHNP may also be able to suggest lifestyle changes to increase the chances of conceiving.
Women over the age of 35 should see their physician or WHNP after six months as fertility tests can take some time to complete, and age may affect the treatment options that are open in that case.
A doctor or WHNP takes a medical history and gives a physical examination. They can also carry out some basic tests on both partners to see if there is an identifiable reason for not having achieved a pregnancy. If necessary, they refer patients to a fertility clinic or local hospital for more specialized tests. The results of these tests help determine the best fertility treatment.
Testing serum LH and FSH levels are often used to assess hypogonadism in women, particularly when menopause is believed to be happening. These levels change during a woman's normal menstrual cycle, so the history of having ceased menstruation coupled with high levels aids the diagnosis of being menopausal. Commonly, the post-menopausal woman is not called hypogonadal if she is of typical menopausal age. Contrast with a young woman or teen, who would have hypogonadism rather than menopause. This is because hypogonadism is an abnormality, whereas menopause is a normal change in hormone levels. In any case, the LH and FSH levels will rise in cases of primary hypogonadism or menopause, while they will be low in women with secondary or tertiary hypogonadism.
Hypogonadism is often discovered during evaluation of delayed puberty, but ordinary delay, which eventually results in normal pubertal development, wherein reproductive function is termed constitutional delay. It may be discovered during an infertility evaluation in either men or women.
Aside from the effect on fertility globozoospermia is symptomless. People with globozoospermia have normal physical and mental development, normal clinical features and normal hormonal profile.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Since the Sertoli cells are not affected by Leydig cell hypoplasia, anti-Müllerian hormone is secreted normally and so there are no Müllerian structures. Wolffian structures, such as the prostate, vasa deferentia, and epidydimides are present. In type I, abdominal testes are revealed on ultrasound; in type II testes may be descended or undescended.
People with Leydig cell hypoplasia type I display no response to the hCG stimulation test; there is no increase in serum levels of testosterone and dihydrotestosterone. Leydig cell hypoplasia type II can display either a pronounced rise of testosterone levels or no rise.
In any case, the diagnosis is confirmed on biopsy of the testes, revealing either absent or hypoplastic Leydig cells. The inside of the testis will be grayish and mucous, displaying arrested spermatogenesis and the presence of Sertoli cells. The diagnosis can also be confirmed by looking for mutations in the gene for the LH receptor.
A diagnosis of Leydig cell hypoplasia is usually made in the neonatal period, following the discovery of ambiguous genitalia, or at puberty, when secondary sex characteristics fail to develop. Puberty is the most common time for Leydig cell hypoplasia to be diagnosed.
Sertoli cell only syndrome is like other non-obstructive azoospermia (NOA) cases are managed by sperm retrieval through testicular sperm extraction (mTESE), micro-surgical testicular sperm extraction (mTESE), or testicular biopsy. On retrieval of viable sperm this could be used in Intracytoplasmic Sperm injection ICSI
In 1979, Levin described germinal cell aplasia with focal spermatogenesis where a variable percentage of seminiferous tubules contain germ cells. It is important to discriminate between both in view of ICSI.
A retrospective analysis performed in 2015 detailed the outcomes of N=148 men with non-obstructive azoospermia and diagnosed Sertoli cell-only syndrome:
- Men with SCOS: 148
- Testicular sperm was successfully retrieved: 35/148
- Successful ICSI: 20/148
- Clinical pregnancy: 4/148
This study considers the effect of FSH levels on clinical success, and it excludes abnormal karyotypes. All patients underwent MD-TESE in Iran. Ethnicity and genetic lineage may have an impact on treatment of azoospermia [citation needed].
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
XX males are sterile due to low or no sperm content and there is currently no treatment to address this infertility. Genital ambiguities, while not necessary to treat for medical reasons, can be treated through the use of hormonal therapy, surgery, or both. Since XX male syndrome is variable in its presentation, the specifics of treatment varies widely as well. In some cases gonadal surgery can be performed to remove partial or whole female genitalia. This may be followed by plastic and reconstructive surgery to make the individual appear more externally male. Conversely, the individual may wish to become more feminine and feminizing genitoplasty can be performed to make the ambiguous genitalia appear more female. Hormonal therapy may also aid in making an individual appear more male or female.
Diagnosis of infertility begins with a medical history and physical exam. The healthcare provider may order tests, including the following:
- Lab tests
- hormone testing, to measure levels of female hormones at certain times during a menstrual cycle
- day 2 or 3 measure of FSH and estrogen, to assess ovarian reserve
- measurements of thyroid function (a thyroid stimulating hormone (TSH) level of between 1 and 2 is considered optimal for conception)
- measurement of progesterone in the second half of the cycle to help confirm ovulation
- Anti-Müllerian hormone to estimate ovarian reserve.
- Examination and imaging
- an endometrial biopsy, to verify ovulation and inspect the lining of the uterus
- laparoscopy, which allows the provider to inspect the pelvic organs
- fertiloscopy, a relatively new surgical technique used for early diagnosis (and immediate treatment)
- Pap smear, to check for signs of infection
- pelvic exam, to look for abnormalities or infection
- a postcoital test, which is done soon after intercourse to check for problems with sperm surviving in cervical mucous (not commonly used now because of test unreliability)
- Hysterosalpingography or sonosalpingography, to check for tube patency
- Sonohysterography to check for uterine abnormalities.
There are genetic testing techniques under development to detect any mutation in genes associated with female infertility.
Initial diagnosis and treatment of infertility is usually made by obstetrician/gynecologists or women's health nurse practitioners. If initial treatments are unsuccessful, referral is usually made to physicians who are fellowship trained as reproductive endocrinologists. Reproductive endocrinologists are usually obstetrician/gynecologists with advanced training in reproductive endocrinology and infertility (in North America). These physicians treat reproductive disorders affecting not only women but also men, children, and teens.
Usually reproductive endocrinology & infertility medical practices do not see women for general maternity care. The practice is primarily focused on helping their women to conceive and to correct any issues related to recurring pregnancy loss.
Treatment takes place within the context of infertility management and needs also to consider the fecundity of the female partner. Thus the choices can be complex.
In a number of situations direct medical or surgical intervention can improve the sperm concentration, examples are use of FSH in men with pituitary hypogonadism, antibiotics in case of infections, or operative corrections of a hydrocele, varicocele, or vas deferens obstruction.
In most cases of oligospermia including its idiopathic form there is no direct medical or surgical intervention agreed to be effective. Empirically many medical approaches have been tried including clomiphene citrate, tamoxifen, HMG, FSH, HCG, testosterone, Vitamin E, Vitamin C, anti-oxidants, carnitine, acetyl-L-carnitine, zinc, high-protein diets. In a number of pilot studies some positive results have been obtained. Clomiphene citrate has been used with modest success. The combination of tamoxifen plus testosterone was reported to improve the sperm situation.
The use of carnitine showed some promise in a controlled trial in selected cases of male infertility improving sperm quality and further studies are needed.
In many situations, intrauterine inseminations are performed with success. In more severe cases IVF, or IVF - ICSI is done and is often the best option, specifically if time is a factor or fertility problems coexist on the female side.
The Low dose Estrogen Testosterone Combination Therapy may improve sperm count and motility in some men including severe oligospermia.