Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
It is important for MADD patients to maintain strength and fitness without exercising or working to exhaustion. Learning this balance may be more difficult than normally, as muscle pain and fatigue may be perceived differently from normal individuals.
Symptomatic relief from the effects of MADD may sometimes be achieved by administering ribose orally at a dose of approximately 10 grams per 100 pounds (0.2 g/kg) of body weight per day, and exercise modulation as appropriate. Taken hourly, ribose provides a direct but limited source of energy for the cells. Patients with myoadenylate deaminase deficiency do not retain ribose during heavy exercise, so supplementation may be required to rebuild levels of ATP.
Creatine monohydrate could also be helpful for AMPD patients, as it provides an alternative source of energy for anaerobic muscle tissue and was found to be helpful in the treatment of other, unrelated muscular myopathies.
Magnesium (Mg) deficiency is a detrimental plant disorder that occurs most often in strongly acidic, light, sandy soils, where magnesium can be easily leached away. Magnesium is an essential micro nutrient found from 0.2-0.4% dry matter and is necessary for normal plant growth. Excess potassium, generally due to fertilizers, further aggravates the stress from the magnesium deficiency, as does aluminium toxicity.
Magnesium has an important role in photosynthesis because it forms the central atom of chlorophyll. Therefore, without sufficient amounts of magnesium, plants begin to degrade the chlorophyll in the old leaves. This causes the main symptom of magnesium deficiency, chlorosis, or yellowing between leaf veins, which stay green, giving the leaves a marbled appearance. Due to magnesium’s mobile nature, the plant will first break down chlorophyll in older leaves and transport the Mg to younger leaves which have greater photosynthetic needs. Therefore, the first sign of magnesium deficiency is the chlorosis of old leaves which progresses to the young leaves as the deficiency continues. Magnesium also is a necessary activator for many critical enzymes, including ribulosbiphosphate carboxylase (RuBisCO) and phosphoenolpyruvate carboxylase (PEPC), both essential enzymes in carbon fixation. Thus low amounts of Mg lead to a decrease in photosynthetic and enzymatic activity within the plants. Magnesium is also crucial in stabilizing ribosome structures, hence, a lack of magnesium causes depolymerization of ribosomes leading to pre-mature aging of the plant. After prolonged magnesium deficiency, necrosis and dropping of older leaves occurs. Plants deficient in magnesium also produce smaller, woodier fruits.
Magnesium deficiency may be confused with zinc or chlorine deficiencies, viruses, or natural ageing since all have similar symptoms. Adding Epsom salts (as a solution of 25 grams per liter or 4 oz per gal) or crushed dolomitic limestone to the soil can rectify magnesium deficiencies. For a more organic solution, applying home-made compost mulch can prevent leaching during excessive rainfall and provide plants with sufficient amounts of nutrients, including magnesium.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
Manganese deficiency in humans results in a number of medical problems. Manganese is a vital element of nutrition in very small quantities (adult male daily intake 2.3 milligrams). However, in greater amounts manganese, like most metals, is poisonous when eaten or inhaled.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Magnesium deficiency is a nutritional deficiency which can affect both plants and animals
Magnesium deficiency may refer to:
- Magnesium deficiency (plants)
- Magnesium deficiency (medicine)
- For the specific condition of low blood magnesium levels, see Hypomagnesemia
Manganese deficiency can be easy to spot in plants because, much like magnesium deficiency, the leaves start to turn yellow and undergo interveinal chlorosis. The difference between these two is that the younger leaves near the top of the plant show symptoms first because manganese is not mobile while in magnesium deficiency show symptoms in older leaves near the bottom of the plant.
Manganese is a component of some enzymes and stimulates the development and activity of other enzymes. Manganese superoxide dismutase (MnSOD) is the principal antioxidant in mitochondria. Several enzymes activated by manganese contribute to the metabolism of carbohydrates, amino acids, and cholesterol.
A deficiency of manganese causes skeletal deformation in animals and inhibits the production of collagen in wound healing.
Manganese is found in leafy green vegetables, fruits, nuts, cinnamon and whole grains. The nutritious kernel, called wheat germ, which contains the most minerals and vitamins of the grain, has been removed from most processed grains (such as white bread). The wheat germ is often sold as livestock feed. Many common vitamin and mineral supplement products fail to include manganese in their compositions. Relatively high dietary intake of other minerals such as iron, magnesium, and calcium may inhibit the proper intake of manganese.
Micronutrient deficiency or dietary deficiency is a lack of one or more of the micronutrients required for plant or animal health. In humans and other animals they include both vitamin deficiencies and mineral deficiencies, whereas in plants the term refers to deficiencies of essential trace minerals.
Hypophosphatemia is diagnosed by measuring the concentration of phosphate in the blood. Concentrations of phosphate less than 0.81 mmol/L (2.5 mg/dL) are considered diagnostic of hypophosphatemia, though additional tests may be needed to identify the underlying cause of the disorder.
Mineral deficiency is a lack of dietary minerals, the micronutrients that are needed for an organism's proper health. The cause may be a poor diet, impaired uptake of the minerals that are consumed or a dysfunction in the organism's use of the mineral after it is absorbed. These deficiencies can result in many disorders including anemia and goitre. Examples of mineral deficiency include, zinc deficiency, iron deficiency, and magnesium deficiency.
In plants a micronutrient deficiency (or trace mineral deficiency) is a physiological plant disorder which occurs when a micronutrient is deficient in the soil in which a plant grows. Micronutrients are distinguished from macronutrients (nitrogen, phosphorus, sulfur, potassium, calcium and magnesium) by the relatively low quantities needed by the plant.
A number of elements are known to be needed in these small amounts for proper plant growth and development. Nutrient deficiencies in these areas can adversely affect plant growth and development. Some of the best known trace mineral deficiencies include: zinc deficiency, boron deficiency, iron deficiency, and manganese deficiency.
Treatment of HSH involves administration of high doses of magnesium salts. These salts may be taken orally or otherwise (e.g. subcutaneously). This treatment works by increasing magnesium absorption through the non-TRPM6 mediated paracellular uptake pathways. This treatment must be continued throughout life.
Because a significant portion of calcium is bound to albumin, any alteration in the level of albumin will affect the measured level of calcium. A corrected calcium level based on the albumin level is: Corrected calcium (mg/dL) = measured total Ca (mg/dL) + 0.8 * (4.0 - serum albumin [g/dL]).
HSH was originally believed to be an X-linked disorder due to the preponderance of affected males. With the finding that mutations in TRPM6 (on chromosome 9) are causative for the disorder this is no longer the case. Of recent interest, however, is the characterization of a patient with symptoms similar to HSH who has a translocation of the chromosomes 9 and X.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
A positive diagnosis test for thiamine deficiency can be ascertained by measuring the activity of the enzyme transketolase in erythrocytes (Erythrocyte Transketolase Activation Assay). Thiamine, as well as its phosphate derivatives, can also be detected directly in whole blood, tissues, foods, animal feed, and pharmaceutical preparations following the conversion of thiamine to fluorescent thiochrome derivatives (Thiochrome Assay) and separation by high-performance liquid chromatography (HPLC). In recent reports, a number of Capillary Electrophoresis (CE) techniques and in-capillary enzyme reaction methods have emerged as potential alternative techniques for the determination and monitoring of thiamine in samples.
The normal thiamine concentration in EDTA-blood is about 20-100 µg/l.
Adenosine monophosphate deaminase deficiency type 1, also called myoadenylate deaminase deficiency (MADD), is a recessive genetic metabolic disorder that affects approximately 1–2% of populations of European descent. It appears to be considerably rarer in Asian populations. The genetic form is caused by a defect in the gene for AMP deaminase though there is also an acquired form of AMP deficiency.
Refeeding syndrome can be fatal if not recognized and treated properly. An awareness of the condition and a high index of suspicion are required in order to make the diagnosis. The electrolyte disturbances of the refeeding syndrome can occur within the first few days of refeeding. Close monitoring of blood biochemistry is therefore necessary in the early refeeding period. In critically ill patients admitted to an intensive care unit, if phosphate drops to below 0.65 mmol from a previously normal level within three days of starting enteral or parenteral nutrition, caloric intake should be reduced to 480 kcals per day for at least two days whilst electrolytes are replaced. Prescribing thiamine, vitamin B complex (strong) and a multivitamin and mineral preparation is recommended. Biochemistry should be monitored regularly until it is stable. Although clinical trials are lacking in patients other than those admitted to an intensive care, it is commonly recommended that energy intake should remain lower than that normally required for the first 3–5 days of treatment of refeeding syndrome.
See NICE Clinical guideline CG32, section 6.6. On first aid and preliminary medical management, see for example the guidance by HMS Monmouth medical officer.
The amount of potassium deficit can be calculated using the following formula:
Meanwhile, the daily body requirement of potassium is calculated by multiplying 1 mmol to body weight in kilogrammes. Adding potassium deficit and daily potassium requirement would give the total amount of potassium need to be corrected in mmol. Dividing mmol by 13.4 will give the potassium in grams.
Management of this condition includes|:
- Intravenous calcium gluconate 10% can be administered, or if the hypocalcaemia is severe, calcium chloride is given instead. This is only appropriate if the hypocalcemia is acute and has occurred over a relatively short time frame. But if the hypocalcemia has been severe and chronic, then this regimen can be fatal, because there is a degree of acclimatization that occurs. The neuromuscular excitability, cardiac electrical instability, and associated symptoms are then not cured or relieved by prompt administration of corrective doses of calcium, but rather exacerbated. Such rapid administration of calcium would result in effective over correction – symptoms of hypercalcemia would follow.
- However, in either circumstance, maintenance doses of both calcium and vitamin-D (often as 1,25-(OH)-D, i.e. calcitriol) are often necessary to prevent further decline
Hypermagnesemia is diagnosed by measuring the concentration of magnesium in the blood. Concentrations of magnesium greater than 1.1 mmol/L are considered diagnostic.
As with all cases of hyponatremia, extreme caution must be taken to avoid the fatal consequences of rapidly correcting electrolytes (e.g. Central pontine myelinolysis, edema). Special considerations with the treatment of potomania are needed. Because this could be a chronic condition, low sodium may be normal for the patient, so an especially careful correction is warranted. It is also very important to note that due to the normal kidney function, and lack of other intrinsic or toxic cause of the electrolyte disturbance, restoration of dietary solutes will correct the electrolytes to normal serum levels. This again must be done with caution.
Many people with beriberi can be treated with thiamine alone. Given thiamine intravenously (and later orally), rapid and dramatic recovery can occur within hours. In situations where concentrated thiamine supplements are unavailable, feeding the person with a thiamine-rich diet (e.g. whole grain brown bread) will lead to recovery, though at a much slower rate.
Following thiamine treatment, rapid improvement occurs, in general, within 24 hours. Improvements of peripheral neuropathy may require several months of thiamine treatment.