Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The only currently available method to diagnose Unverricht–Lundborg disease is a genetic test to check for the presence of the mutated cystatin B gene. If this gene is present in an individual suspected of having the disease, it can be confirmed. However, genetic tests of this type are prohibitively expensive to perform, especially due to the rarity of ULD. The early symptoms of ULD are general and in many cases similar to other more common epilepsies, such as juvenile myoclonic epilepsy. For these reasons, ULD is generally one of the last options doctors explore when looking to diagnose patients exhibiting its symptoms. In most cases, a misdiagnosis is not detrimental to the patient, because many of the same medications are used to treat both ULD and whatever type of epilepsy the patient has been misdiagnosed with. However, there are a few epilepsy medications that increase the incidence of seizures and myoclonic jerks in patients with ULD, which can lead to an increase in the speed of progression, including phenytoin, fosphenytoin, sodium channel blockers, GABAergic drugs, gabapentin and pregabalin.
Other methods to diagnose Unverricht–Lundborg disease are currently being explored. While electroencephalogram (EEG) is useful in identifying or diagnosing other forms of epilepsy, the location of seizures in ULD is currently known to be generalized across the entire brain. Without a specific region to pinpoint, it is difficult to accurately distinguish an EEG reading from an individual with ULD from an individual with another type of epilepsy characterized by generalized brain seizures. However, with recent research linking ULD brain damage to the hippocampus, the usefulness of EEG as a diagnostic tool may increase.
Magnetic Resonance Imaging (MRI) is also often used during diagnosis of patients with epilepsy. While MRIs taken during the onset of the disease are generally similar to those of individuals without ULD, MRIs taken once the disease has progressed show characteristic damage, which may help to correct a misdiagnosis.
While ULD is a rare disease, the lack of well defined cases to study and the difficulty in confirming diagnosis provide strong evidence that this disease is likely under diagnosed.
The test is particularly indicated in children who have had cluster seizures in series. It is also recommended for patients who are diagnosed GEFS+ and when the seizures are associated with fever, infection, experienced regression, delayed cognitive growth or behavioral problems. The test is typically ordered by neurologists. The diagnostic test can be done by drawing blood or saliva of the patient and their immediate family. It is analyzed in laboratories that specialize in genetic testing. Genetic testing can aid in a firmer diagnosis and understanding of the disorder, may aid in identifying the optimal treatment plan and if positive, testing of the parents can determine if they are carriers. (See Genetic Counseling)
A patient’s DNA is sequenced from a blood sample with the use of the ABI Big Dye Terminator v.3.0 kit. Since this is a genetic disease, the basis of diagnosis lies in identifying genetic mutations or chromosomal abnormalities. The DNA sequence can be run with CLN8 Sanger Sequencing or CLN8 Targeted Familial Mutations whether its single, double, or triple Exon Sequencing. Also, preliminary evidence of the disease can be detected by means of MRI and EEG. These tests identify lipid content of the brain and any anomaly from the norm may be linked to Northern epilepsy.
PCDH19 gene-related epilepsy is clinically based on patient and family seizure history, cognitive and behavioral neuropsychological evaluation, neurological examination, electroencephalogram (EEG) studies, and long term observation. Diagnosis is confirmed using molecular testing for PCDH19 mutations.
Unverricht–Lundborg disease is also known as EPM1, as it is a form of progressive myoclonic epilepsy (PME). Other progressive myoclonic epilepsies include myoclonus epilepsy and ragged red fibers (MERRF syndrome), Lafora disease (EPM2a or EMP2b), Neuronal ceroid lipofuscinosis (NCL) and sialidosis. Progressive myoclonic epilepsies generally constitute only a small percentage of epilepsy cases seen, and ULD is the most common form. While ULD can lead to an early death, it is considered to be the least severe form of progressive myoclonic epilepsy.
A detailed family history should be obtained from at least three generations. In particularly a history to determine if there has been any neonatal and childhood deaths: Also a way to determine if any one of the family members exhibit any of the features of the multi-system disease. Specifically if there has been a maternal inheritance, when the disease is transmitted to females only, or if there is a family member who experienced a multi system involvement such as: Brain condition that a family member has been record to have such asseizures, dystonia, ataxia, or stroke like episodes.The eyes with optic atrophy, the skeletal muscle where there has been a history of myalgia, weakness or ptosis. Also in the family history look for neuropathy and dysautonomia, or observe heart conditions such ascardiomyopathy. The patients history might also exhibit a problem in their kidney, such as proximal nephron dysfunction. An endocrine condition, for example diabetes and hypoparathyroidism. The patient might have also had gastrointestinal condition which could have been due to liver disease, episodes of nausea or vomiting. Multiple lipomas in the skin, sideroblastic anemia and pancytopenia in the metabolic system or short stature might all be examples of patients with possible symptoms of MERRF disease.
Lafora Disease is diagnosed by doing a series of tests by a neurologist, epileptologist (person who specializes in epilepsy), or geneticist. To confirm the diagnosis, an EEG, MRI, and genetic testing are needed to detect the activity of the brain and potential genetic relation to Lafora Disease. A biopsy may be necessary as well to detect and confirm the presence of Lafora bodies in the skin. Typically, if a patient comes to a doctor and has been having seizures, like patients with LD characteristically have, these are the common tests that would happen right away to figure out areas of the brain where the seizures are occurring. Whole genome or exome testing is necessary to have with anyone who suffers from epilepsy.
PME accounts for less than 1% of epilepsy cases at specialist centres. The incidence and prevalence of PME is unknown, but there are considerable geography and ethnic variations amongst the specific genetic disorders. One cause, Unverricht Lundborg Disease, has an incidence of at least 1:20,000 in Finland.
The diagnosis or suspicion of LGS is often a question of probability rather than certainty. This is because the varied presentations of LGS share features with other disorders, many of which may be said to have overlapping characteristics.
The diagnosis is more obvious when the epilepsy has frequent and manifold attacks, with the classic pattern on the electro-encephalogram (EEG); the latter is a slowed rhythm with Spike-wave-pattern, or with a multifocal and generalizing Sharp-slow-wave-discharges at 1.5–2.5 Hz. During sleep, frequently, tonic patterns can be seen. But variations of these patterns are known in patients with no diagnosis other than LGS, and they can differ bilaterally, and from time to time, within the same patient.
General medical investigation usually reveals developmental delay and cognitive deficiencies in children with true LGS. These may precede development of seizures, or require up to two years after the seizures begin, in order to become apparent.
Exclusion of organic or structural brain lesions is also important in establishing a correct diagnosis of LGS; this may require magnetic resonance imaging (MRI) or computerized tomography (CT). An important differential diagnosis is 'Pseudo-Lennox-Syndrome', which differs from LGS, in that there are no tonic seizures; sleeping EEG provides the best basis for distinguishing between the two.
The diagnosis varies from individual to individual, each is evaluated and diagnosed according to their age, clinical phenotype and pressed inheritance pattern. If the Individual has been experiencing myoclonus the doctor will run a series of genetic studies to determine if its a mitochondrial disorder.
The molecular genetic studies are run to identify the reason of for the mutations underlying the mitochondrial dysfunction. This approach will avoid the need for a muscle biopsy or an exhaustive metabolic evaluation. After the sequencing the mitochondrial genomes, four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation. The remaining mutations only account for 10% of cases, and the remaining 10% of the patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
If a patient does not exhibit mitochondrial DNA mutations, there are other ways that they can be diagnosed with MERRF. They can go through computed tomography (CT) or magnetic resonance imaging (MRI).The classification for the severity of MERRF syndrome is difficult to distinguish since most individuals will exhibit multi-symptoms. For children with complex neurologic or multi-system involvement, as the one described below, is often necessary.
An electroencephalogram (EEG) can assist in showing brain activity suggestive of an increased risk of seizures. It is only recommended for those who are likely to have had an epileptic seizure on the basis of symptoms. In the diagnosis of epilepsy, electroencephalography may help distinguish the type of seizure or syndrome present. In children it is typically only needed after a second seizure. It cannot be used to rule out the diagnosis and may be falsely positive in those without the disease. In certain situations it may be useful to perform the EEG while the affected individual is sleeping or sleep deprived.
Diagnostic imaging by CT scan and MRI is recommended after a first non-febrile seizure to detect structural problems in and around the brain. MRI is generally a better imaging test except when bleeding is suspected, for which CT is more sensitive and more easily available. If someone attends the emergency room with a seizure but returns to normal quickly, imaging tests may be done at a later point. If a person has a previous diagnosis of epilepsy with previous imaging, repeating the imaging is usually not needed even if there are subsequent seizures.
For adults, the testing of electrolyte, blood glucose and calcium levels is important to rule out problems with these as causes. An electrocardiogram can rule out problems with the rhythm of the heart. A lumbar puncture may be useful to diagnose a central nervous system infection but is not routinely needed. In children additional tests may be required such as urine biochemistry and blood testing looking for metabolic disorders.
A high blood prolactin level within the first 20 minutes following a seizure may be useful to help confirm an epileptic seizure as opposed to psychogenic non-epileptic seizure. Serum prolactin level is less useful for detecting focal seizures. If it is normal an epileptic seizure is still possible and a serum prolactin does not separate epileptic seizures from syncope. It is not recommended as a routine part of the diagnosis of epilepsy.
Diagnosis is typically made based on patient history. The physical examination should be normal. The primary diagnosis for JME is a good knowledge of patient history and the neurologist's familiarity with the myoclonic jerks, which are the hallmark of the syndrome. Additionally, an electroencephalogram (EEG), will indicate a pattern of waves and spikes associated with the syndrome. The EEG generally shows a very characteristic pattern with generalized 4–6 Hz polyspike and slow wave discharges. These discharges are often provoked by photic stimulation (blinking lights) and sometimes hyperventilation. Both a magnetic resonance imaging scan (MRI) and computed tomography scan (CT scan) should appear normal in JME patients.
Diagnosis can be made by EEG. In case of epileptic spasms, EEG shows typical patterns.
According to the Dravet Syndrome Foundation, the diagnostic criteria for DS requires the patient to present with several of the following symptoms:
- Onset of seizures in the first year of life in an otherwise healthy infant
- Initial seizures are typically prolonged and are generalized or unilateral
- Presence of other seizure types (i.e. myoclonic seizures)
- Seizures associated with fever due to illness or vaccinations
- Seizures induced by prolonged exposure to warm temperatures
- Seizures in response to strong lighting or certain visual patterns
- Initially normal EEGs and later EEGs with slowing and severe generalized polyspikes
- Normal initial development followed by slow development during the first few years of life
- Some degree of hypotonia
- Unstable gait and balance issues
- Ankle pronation and flat feet and/or development of a crouched gait with age
Intravenous immunoglobulin therapy has been used in Lennox–Gastaut syndrome as early as 1986, when van Rijckevorsel-Harmant and colleagues used it in seven patients with ostensibly idiopathic LGS and saw EEG improvement and decreased seizure frequency in six of them.
Life expectancy is only moderately affected by NE because the rate of disease progression is slow. Patients usually survive past 40-50 years of age.
This is an autosomal recessive disorder in which the body is deficient in α-neuraminidase.
Diagnosis of epilepsy can be difficult. A number of other conditions may present very similar signs and symptoms to seizures, including syncope, hyperventilation, migraines, narcolepsy, panic attacks and psychogenic non-epileptic seizures (PNES). In particular a syncope can be accompanied by a short episode of convulsions. Nocturnal frontal lobe epilepsy, often misdiagnosed as nightmares, was considered to be a parasomnia but later identified to be an epilepsy syndrome. Attacks of the movement disorder paroxysmal dyskinesia may be taken for epileptic seizures. The cause of a drop attack can be, among many others, an atonic seizure.
Children may have behaviors that are easily mistaken for epileptic seizures but are not. These include breath-holding spells, bed wetting, night terrors, tics and shudder attacks. Gastroesophageal reflux may cause arching of the back and twisting of the head to the side in infants, which may be mistaken for tonic-clonic seizures.
Misdiagnosis is frequent (occurring in about 5 to 30% of cases). Different studies showed that in many cases seizure-like attacks in apparent treatment-resistant epilepsy have a cardiovascular cause. Approximately 20% of the people seen at epilepsy clinics have PNES and of those who have PNES about 10% also have epilepsy; separating the two based on the seizure episode alone without further testing is often difficult.
The most important factor in diagnosing a patient with vertiginous epilepsy is the subject’s detailed description of the episode. However, due to the associated symptoms of the syndrome a subject may have difficulty remembering the specifics of the experience. This makes it difficult for a physician to confirm the diagnosis with absolute certainty. A questionnaire may be used to help patients, especially children, describe their symptoms. Clinicians may also consult family members for assistance in diagnosis, relying on their observations to help understand the episodes. In addition to the description of the event, neurological, physical and hematologic examinations are completed to assist in diagnosis. For proper diagnosis, an otological exam (examination of the ear) should also be completed to rule out disorders of the inner ear, which could also be responsible for manifestations of vertigo. This may include an audiological assessment and vestibular function test. During diagnosis, history-taking is essential in determining possible causes of vertiginous epilepsy as well as tracking the progress of the disorder over time.
Other means used in diagnosis of vertiginous epilepsy include:
- Electroencephalography (EEG)
- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
- Neuropsychological testing
The EEG measures electrical activity in the brain, allowing a physician to identify any unusual patterns. While EEGs are good for identifying abnormal brain activity is it not helpful in localizing where the seizure originates because they spread so quickly across the brain. MRIs are used to look for masses or lesions in the temporal lobe of the brain, indicating possible tumors or cancer as the cause of the seizures. When using a PET scan, a physician is looking to detect abnormal blood flow and glucose metabolism in the brain, which is visible between seizures, to indicate the region of origin.
The most effective anti-epileptic medication for JME is valproic acid (Depakote). Women are often started on alternative medications due to valproic acid's high incidence of fetal malformations. Lamotrigine, levetiracetam, topiramate, and zonisamide are alternative anti-epileptic medications with less frequent incidence of pregnancy related complications, and they are often used first in females of childbearing age. Carbamazepine may aggravate primary generalized seizure disorders such as JME. Treatment is lifelong. Patients should be warned to avoid sleep deprivation.
The effects of myoclonus in an individual can vary depending on the form and the overall health of the individual. In severe cases, particularly those indicating an underlying disorder in the brain or nerves, movement can be extremely distorted and limit ability to normally function, such as in eating, talking, and walking. In these cases, treatment that is usually effective, such as clonazepam and sodium valproate, may instead cause adverse reaction to the drug, including increased tolerance and a greater need for increase in dosage. However, the prognosis for more simple forms of myoclonus in otherwise healthy individuals may be neutral, as the disease may cause few to no difficulties. Other times the disease starts simply, in one region of the body, and then spreads.
Seizures in Dravet syndrome can be difficult to manage but may be reduced by anticonvulsant medications such as clobazam, stiripentol, topiramate and valproate. Because the course of the disorder varies from individual to individual, treatment protocols may vary. A diet high in fats and low in carbohydrates may also be beneficial, known as a ketogenic diet. Although diet adjustment can help, it does not eliminate the symptoms. Until a better form of treatment or cure is discovered, those with this disease will have myoclonic epilepsy for the rest of their lives.
Certain anticonvulsant drugs that are classed as Sodium Channel Blockers are now known to make seizures worse in most Dravet patients. These drugs include carbamazepine, gabapentin, lamotrigine, and phenytoin.
Treatments include cognitive rehabilitation through psychomotor and speech therapy. In addition, valproate is often administered to prevent recurrence of febrile seizures and benzodiazapine is used for long lasting seizures, but these treatments are usually insufficient.
Stiripentol was the only drug for which a double-blind placebo trial was performed and this drug showed efficacy in trials. It acts as a GABAergic agent and as a positive allosteric modulator of GABA receptor. Stiripentol, can improve focal refractory epilepsy, as well as Dravet's syndrome, supplemented with clobazam and valproate was approved in Europe in 2007 as a therapy for Dravet syndrome and has been found to reduce overall seizure rate by 70%. In cases with more drug resistant seizures, topiramate and the ketogenic diet are used as alternative treatments.
Cannabidiol (CBD) has received orphan drug status in the United States, for treatment of Dravet syndrome which will allow it to be studied.
Criteria for diagnosis of abdominal epilepsy includes frequent periodic abdominal symptoms, an abnormal electroencephalogram (EEG) and significant improvement of gastrointestinal symptoms after taking anti-seizure medication. Medical testing for diagnosis can be completed using MRI scans of the brain, CT scans and ultrasounds of the abdomen, endoscopy of the gastrointestinal tract, and blood tests.
As of 1993 only approximately 30 people with AHC had been described in scientific literature. Due to the rarity and complexity of AHC, it is not unusual for the initial diagnosis to be incorrect, or for diagnosis to be delayed for several months after the initial symptoms become apparent. The average age of diagnosis is just over 36 months. Diagnosis of AHC is not only difficult because of its rarity, but because there is no diagnostic test, making this a diagnosis of exclusion. There are several generally accepted criteria which define this disorder, however other conditions with a similar presentation, such as HSV encephalitis, must first be ruled out. Due to these diagnostic difficulties, it is possible that the commonness of the disease is underestimated.
The following descriptions are commonly used in the diagnosis of AHC. The initial four criteria for classifying AHC were that it begins before 18 months of age, includes attacks of both hemiplegia on either side of the body, as well as other autonomic problems such as involuntary eye movement (episodic monocular nystagmus), improper eye alignment, choreoathetosis, and sustained muscle contractions (dystonia). Finally, patients suffer from intellectual disabilities, delayed development, and other neurological abnormalities. These diagnostic criteria were updated in 1993 to include the fact that all of these symptoms dissipate immediately upon sleeping. Diagnostic criteria were also expanded to include episodes of bilateral hemiplegia which shifted from one side of the body to the other.
Recent criteria have been proposed for screening for AHC early, in order to improve the diagnostic timeline. These screening criteria include focal or unilateral paroxysmal dystonia in the first 6 months of life, as well as the possibility of flaccid hemiplegia either with or separate from these symptoms. Paroxysmal ocular movements should also be considered, and these should include both binocular and monocular symptoms which show in the first 3 months of life.
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.