Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If a patient displays congenital melanocytic nevi or giant congenital melanocytic nevi, the criteria for diagnosis of neurocutaneous melanosis is as follows:
- Melanocytic deposits exist within the central nervous system that are either malignant or benign
- The cutaneous lesions, giant or otherwise, are not malignant
This criteria is typically validated through biopsy of the cutaneous lesions and imaging of the central nervous system. It is important to establish that the cutaneous lesions are benign. If not, then the melanocytic deposits in the central nervous system may be the result of metastasis of cutaneous melanoma and not neurocutaneous melanosis.
Imaging has been shown to be the only reliable detection method for the presence of neurocutaneous melanosis that can be performed in living patients. Currently, the preferred imaging modality for diagnosis of neurocutaneous melanosis is Magnetic Resonance Imaging, although ultrasound is another viable option. The signal due melanin deposits in the leptomeninges typical of neurocutaneous melanosis can be easily detected in MRI scans of patients under four months old. In patients above this age, there is some suggestion that normal brain myelination may partially obscure these signals.
As most patients with neurocutaneous melanosis are asymptomatic, those who are diagnosed through MR imaging are not guarantied to develop symptoms. Those diagnosed who did not develop symptoms ranged from 10% to 68%. This wide range is most likely due to the large number of asymptomatic, undiagnosed patients with neurocutaneous melanosis.
The majority of patients with neurocutaneous melanosis are asymptomatic and therefore have a good prognosis with few complications. Most are not diagnosed, so definitive data in not available. For symptomatic patients, the prognosis is far worse. In patients without the presence of melanoma, more than 50% die within 3 years of displaying symptoms. While those with malignancy have a mortality rate of 77% with most patients displaying symptoms before the age of 2.
The presence of a Dandy-Walker malformation along with neurocutaneous melanosis, as occurs in 10% of symptomatic patients, further deteriorates prognosis. The median survival time for these patients is 6.5 months after becoming symptomatic.
Some suggestions for surveillance for cancer include the following:
- Small intestine with small bowel radiography every 2 years,
- Esophagogastroduodenoscopy and colonoscopy every 2 years,
- CT scan or MRI of the pancreas yearly,
- Ultrasound of the pelvis (women) and testes (men) yearly,
- Mammography (women) from age 25 annually livelong, and
- Papanicolaou smear (Pap smear) every year
Follow-up care should be supervised by a physician familiar with Peutz–Jeghers syndrome. Genetic consultation and counseling as well as urological and gynecological consultations are often needed.
Large and especially giant congenital nevi are at higher risk for malignancy degeneration into melanoma. Because of the premalignant potential, it is an acceptable clinical practice to remove congenital nevi electively in all patients and relieve the nevocytic overload.
Benign congenital nevi can have histological characteristics resembling melanomas, often breaking most if not all of the ABCDE rules. Dermatoscopic findings of the smaller forms of benign congenital nevi can aid in their differentiation from other pigmented neoplasms.
Microscopically, congenital melanocytic nevi appear similar to acquired nevi with two notable exceptions. For the congenital nevus, the neval cells are found deeper into the dermis. Also, the deeper nevus cells can be found along with neurovascular bundles, with both surrounding hair follicles, sebaceous glands, and subcutaneous fat. Such annexes and the hypodermis can also be hypoplasic or, conversely, present aspects of hamartoma.
The main criteria for clinical diagnosis are:
- Family history
- Mucocutaneous lesions causing patches of hyperpigmentation in the mouth and on the hands and feet. The oral pigmentations are the first on the body to appear, and thus play an important part in early diagnosis. Intraorally, they are most frequently seen on the gingiva, hard palate and inside of the cheek. The mucosa of the lower lip is almost invariably involved as well.
- Hamartomatous polyps in the gastrointestinal tract. These are benign polyps with an extraordinarily low potential for malignancy.
Having 2 of the 3 listed clinical criteria indicates a positive diagnosis. The oral findings are consistent with other conditions, such as Addison's disease and McCune-Albright syndrome, and these should be included in the differential diagnosis. 90–100% of patients with a clinical diagnosis of PJS have a mutation in the "STK11/LKB1" gene. Molecular genetic testing for this mutation is available clinically.
In general, children with a small isolated nevus and a normal physical exam do not need further testing; treatment may include potential surgical removal of the nevus. If syndrome issues are suspected, neurological, ocular, and skeletal exams are important. Laboratory investigations may include serum and urine calcium and phosphate, and possibly liver and renal function tests. The choice of imaging studies depends on the suspected abnormalities and might include skeletal survey, CT scan of the head, MRI, and/or EEG.
Depending on the systems involved, an individual with Schimmelpenning syndrome may need to see an interdisciplinary team of specialists: dermatologist, neurologist, ophthalmologist, orthopedic surgeon, oral surgeon, plastic surgeon, psychologist.
Conditions which may be confused with NF include, LEOPARD syndrome, and Legius syndrome.
Following a visual examination and a dermatoscopic exam, or "in vivo" diagnostic tools such as a confocal microscope, the doctor may biopsy the suspicious mole. A skin biopsy performed under local anesthesia is often required to assist in making or confirming the diagnosis and in defining severity. Elliptical excisional biopsies may remove the tumor, followed by histological analysis and Breslow scoring. Incisional biopsies such as punch biopsies are usually contraindicated in suspected melanomas, because of the possibility of sampling error or local implantation causing misestimation of tumour thickness. However, fears that such biopsies may increase the risk of metastatic disease seem unfounded.
Total body photography, which involves photographic documentation of as much body surface as possible, is often used during follow-up for high-risk patients. The technique has been reported to enable early detection and provides a cost-effective approach (with any digital camera), but its efficacy has been questioned due to its inability to detect macroscopic changes. The diagnosis method should be used in conjunction with (and not as a replacement for) dermoscopic imaging, with a combination of both methods appearing to give extremely high rates of detection.
Surgical removal of tumors is an option, however the risks involved should be assessed first. With regard to OPG (optic pathway gliomas), the preferred treatment is chemotherapy. However, radiotherapy isn't recommended in children who present with this disorder. It is recommended that children diagnosed with NF1 at an early age have an examination each year, which allows any potential growths or changes related to the disorder to be monitored.
A recent and novel method is the "ugly duckling sign". It is simple, easy to teach, and highly effective. Correlation of common lesion characteristics is made. Lesions that greatly deviate from the common characteristics are labeled an "Ugly Duckling", and a further professional exam is required. The "Little Red Riding Hood" sign suggests that individuals with fair skin and light-colored hair might have difficult-to-diagnose amelanotic melanomas. Extra care is required when examining such individuals, as they might have multiple melanomas and severely dysplastic nevi. A dermatoscope must be used to detect "ugly ducklings", as many melanomas in these individuals resemble non-melanomas or are considered to be "wolves in sheep's clothing". These fair-skinned individuals often have lightly pigmented or amelanotic melanomas that do not present easy-to-observe color changes and variations. Their borders are often indistinct, complicating visual identification without a dermatoscope.
Amelanotic melanomas and melanomas arising in fair-skinned individuals are very difficult to detect, as they fail to show many of the characteristics in the ABCD rule, break the "Ugly Duckling" sign and are hard to distinguish from acne scarring, insect bites, dermatofibromas, or lentigines.
Phakomatoses refers to a group of neuro-oculo-cutaneous syndromes or neurocutaneous disorders involving structures arising from the embryonic ectoderm. These multisystem disorders involve the ectodermal structures like central nervous system, skin and eyes. The lesions have a variable severity. However, it has been subsequently noted that mesodermal and endodermal tissues too are involved.
A number of genetic and acquired diseases come in this category and may affect one or more of these tissues. However, in some conditions, such as von Hippel-Lindau disease, ectodermal presentation is minimal.
Phakomatoses are inconsistently defined, and there is a lack of consensus about what conditions are included in this category.
Conditions included are:
- Ataxia telangiectasia
- Incontinentia pigmenti
- Neurofibromatosis
- Nevoid basal cell carcinoma syndrome
- Sturge-Weber syndrome
- Tuberous sclerosis
- Wyburn-Mason syndrome (Bonnet–Dechaume–Blanc syndrome)
- von Hippel-Lindau disease
Currently, there is no consensus regarding type or frequency of scans following diagnosis and treatment of the primary eye tumor. Of the 50% of patients who develop metastatic disease, more than 90% of patients will develop liver metastases. As such, the majority of surveillance techniques are focused on the liver. These include abdominal magnetic resonance imaging (MRI), abdominal ultrasound and liver function tests. The scientific community is currently working to develop guidelines, but until then, each patient must take into consideration their individual clinical situation and discuss appropriate surveillance with their doctors.
Some ophthalmologists have also found promise with the use of intravitreal avastin injections in patients suffering from radiation-induced retinopathy, a side effect of plaque brachytherapy treatment, as well as imaging surveillance with SD-OCT.
CT and MRI are most often used to identify intracranial abnormalities. When a child is born with a facial cutaneous vascular malformation covering a portion of the upper or the lower eyelids, imaging should be performed to screen for intracranial leptomeningeal angiomatosis. The haemangioma present on the surface of the brain is in the vast majority of cases on the same side as the birth mark and gradually results in calcification of the underlying brain and atrophy of the affected region
A 1991 report documented the cases of nine patients with both Becker's nevus and malignant melanoma. Of the nine melanomas, five were in the same body area as the Becker's nevus, with only one occurring within the nevus itself. As this was apparently the first documented co-occurrence of the two diseases, there is so far no evidence of higher malignancy rates in Becker's nevi versus normal skin. Nonetheless, as with any abnormal skin growth, the nevus should be monitored regularly and any sudden changes in appearance brought to the attention of one's doctor.
Melanosis is a form of hyperpigmentation associated with increased melanin.
It can also refer to:
- Melanism
- Ocular melanosis
- Smoker's melanosis
- Oral melanosis
- Riehl melanosis
As Becker's nevus is considered a benign lesion, treatment is generally not necessary except for cosmetic purposes. Shaving or trimming can be effective in removing unwanted hair, while electrology or laser hair removal may offer a longer-lasting solution. Different types of laser treatments may also be effective in elimination or reduction of hyperpigmentation, though the results of laser treatments for both hair and pigment reduction appear to be highly variable.
Nevus sebaceous was first identified in 1895 by Jadassohn. Sebaceous nevi occur in 1 to 3 of 1000 births, with equal incidence by sex. There is no test to determine whether an individual born with a sebaceous nevus will go on to develop further symptoms of Schimmelpenning syndrome. It has been reported that up to 10% of individuals with epidermal nevi may develop additional syndrome symptoms, but that number appears to be inconsistent with the rarity of the syndrome and may be overstated. Prevalence is unknown, but Epidermal nevus syndrome is listed with the National Organization for Rare Disorders, which defines "rare" as affecting "fewer than 200,000 people in the United States."
A Q-switched laser has been successfully used to treat the condition.
Although it is possible for the birthmark and atrophy in the cerebral cortex to be present without symptoms, most infants will develop convulsive seizures during their first year of life. There is a greater likelihood of intellectual impairment when seizures are resistant to treatment. Studies do not support the widely held belief that seizure frequency early in life in patients who have SWS is a prognostic indicator.
Because there are no lymphatic channels to the uveal tract, metastasis occurs through local extension and/or blood borne dissemination. The most common site of metastasis for uveal melanoma is the liver; the liver is the first site of metastasis for 80%-90% of ocular melanoma patients. Other common sites of metastasis include the lung, bones and just beneath the skin (subcutaneous). Approximately 50 percent of patients will develop metastases within 15 years after treatment of the primary tumor, and the liver will be involved 90% of the time. Metastasis can occur more than 10 years after treatment of the primary tumor, and patients should not be considered cured even after a 10-year interval of monitoring. Molecular features of the tumor including Chromosome 3 status, Chromosome 6p status, and Chromosome 8q status and gene expression profiling (such as the DecisionDx-UM test) can be used to adjust this likelihood of metastasis for an individual patient.
The average survival time after diagnosis of liver metastases depends on the extent of systemic spread. The disease-free interval, the performance status, the liver substitution by metastases and the serum level of lactic dehydrogenase are the most important prognostic factors for metastatic uveal melanoma. There is currently no cure for metastatic uveal melanoma.
Nevus of Ota (also known as "congenital melanosis bulbi", "nevus fuscoceruleus ophthalmomaxillaris", "oculodermal melanocytosis", and "oculomucodermal melanocytosis") is a blue hyperpigmentation that occurs on the face. It was first reported by Dr. M.T. Ota of Japan in 1939.
Nevus of Ota is caused by the entrapment of melanocytes in the upper third of the dermis. It is found on the face unilaterally and involves the first two branches of the trigeminal nerve. The sclera is involved in two-thirds of cases (causing an increased risk of glaucoma). It should not be confused with Mongolian spot, which is a birthmark caused by entrapment of melanocytes in the dermis but is located in the lumbosacral region. Women are nearly five times more likely to be affected than men, and it is rare among Caucasian people. Nevus of Ota may not be congenital, and may appear during puberty.
Lesions usually disappear between 3 months to 3 years for those who stop smoking. Smoker's melanosis is a benign, normal physiological reaction, and does not develop into cancer. If it does not disappear, however, a biopsy can verify the diagnosis. If Smoker's melanosis is destroyed by excessive smoking, as in the hard palate of reverse smokers, who smoke with the glowing part of the cigarette inside the mouth for different reasons, a pale depigmented surface is first seen, indicating the loss of the protecting melanin. Then a red inflammation sometimes occurs and cancer development may follow. In reverse smokers it is important to inspect regularly the areas with smoker's melanosis to detect any melanin destruction, in order to stop smoking in time and thus prevent a cancer to develop.
A study in Sweden showed that 21.5% of smokers and 3% of nonsmokers (genetic pigmentation or unknown cause) had lesions that could be classified as an oral melanin pigmentation. A gingival melanin index in 4 degrees was established. Already with a consumption of 1-3 cigarettes a day 9.3% of all 20.333 examined showed a smoker's melanosis. Pipe smokers had smoker's melanosis in 16.8%. One year after the start of cigarette smoking a clinically visible smoker's melanosis could be seen in 12.3% of women, and 17% among men.
In cigarette smokers who quit smoking, the number of individuals with smoker's melanosis becomes slowly less frequent after 2–3 months, but can still be seen in a few former smokers three years after smoking stop.
Although clinically visible genetic melanin pigmentations in the mouth are present in several ethnic groups all over the world, more mucosal areas will be melanin-pigmentet if tobacco products are used. Smoker's melanosis is found in India, Italy, Japan, Nigeria, Sweden, Turkey, USA, and several other countries.
Smoker's melanosis is expected to be found also in other tissue surfaces exposed to tobacco and tobacco smoke, for instance lips and in skin of the fingers holding the cigarette. Future studies will also show if the use of tobacco exaggerates the pigmentation of skin.