Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prognoses and treatments are different for HL and between all the different forms of NHL, and also depend on the grade of tumour, referring to how quickly a cancer replicates. Paradoxically, high-grade lymphomas are more readily treated and have better prognoses: Burkitt lymphoma, for example, is a high-grade tumour known to double within days, and is highly responsive to treatment. Lymphomas may be curable if detected in early stages with modern treatment.
After a diagnosis and before treatment, a cancer is staged. This refers to determining if the cancer has spread, and if so, whether locally or to distant sites. Staging is reported as a grade between I (confined) and IV (spread). Staging is carried out because the stage of a cancer impacts its prognosis and treatment.
The Ann Arbor staging system is routinely used for staging of both HL and NHL. In this staging system, I represents a localized disease contained within a lymph node, II represents the presence of lymphoma in two or more lymph nodes, III represents spread of the lymphoma to both sides of the diaphragm, and IV indicates tissue outside a lymph node.
CT scan or PET scan imaging modalities are used to stage a cancer.
Age and poor performance status are established poor prognostic factors, as well.
Splenic MZL is difficult to diagnose and can look similar to other types of lymphoma. Tests include a physical examination, blood tests to determine overall health and detect infections (ex. hepatitis C), a bone marrow biopsy, CT scan, and a PET scan. Sometimes a splenectomy is necessary during the diagnosis process in order to determine the exact type of lymphoma. If the spleen is removed, you will be at a larger risk of infection.
In order to diagnose MALT, a biopsy is needed from the affected tissue. If the abnormal tissue is suspected to be in the stomach or bowel, an endoscopy is done in order to get the biopsy. This requires either a gastroscopy or colonoscopy. If the lymphoma is thought to have spread to other areas in this region, an ultrasound scan is often done at the same time. If the abnormal tissue is thought to be in the lungs, a bronchoscopy is ordered.
In order to determine the correct type of lymphoma and stage it accurately, the physician will also need to do a physical exam, blood tests to determine blood cell counts, a CT scan, an MRI and/or a PET scan. A PET scan is the most important in planning a course of treatment.
A bone marrow biopsy may be ordered to test for lymph node involvement. If the lymphoma is in the stomach, the physician will test for H.pylori infection through a stool sample. This infection would be necessary to treat in conjunction to treating the cancer.
Treatment with dose-adjusted EPOCH with rituximab has shown promising initial results in a small series of patients (n=17), with a 100% response rate, and 100% overall survival and progression-free survival at 28 months (median follow-up).
Of all cancers involving the same class of blood cell, 8% of cases are MALT lymphomas.
The factors of poor prognosis for patients with thyroid lymphoma are advanced stage of the tumor, large size (>10 cm) as well as spreading to mediastinum. The overall survival for primary thyroid lymphoma is 50% to 70%, ranging from 80% in stage IE to less than 36% in stage IIE and IVE in 5 years.
Biopsy of affected lymph nodes or organs confirms the diagnosis, although a needle aspiration of an affected lymph node can increase suspicion of the disease. X-rays, ultrasound and bone marrow biopsy reveal other locations of the cancer. There are now a range of blood tests that can be utilised to aid in the diagnosis of lymphoma. Flow cytometry detects antibodies linked to tumour cell surface antigens in fluid samples or cell suspensions. Polymerase chain reaction (PCR) for antigen receptor rearrangements (PARR) identifies circulating tumour cells based on unique genetic sequences. The canine Lymphoma Blood Test (cLBT) measures multiple circulating biomarkers and utilises a complex algorithm to diagnose lymphoma. This test utilises the acute phase proteins (C-Reactive Protein and Haptoglobin). In combination with basic clinical symptoms, it gives in differential diagnosis the sensitivity 83.5% and specificity 77%. The TK canine cancer panel is an indicator of general neoplastic disease. The stage of the disease is important to treatment and prognosis. Certain blood tests have also been shown to be prognostic.
The stage of the disease is important to treatment and prognosis.
- Stage I - only one lymph node or lymphoid tissue in one organ involved.
- Stage II - lymph nodes in only one area of the body involved.
- Stage III - generalized lymph node involvement.
- Stage IV - any of the above with liver or spleen involvement.
- Stage V - any of the above with blood or bone marrow involvement.
Each stage is divided into either "substage a", those without systemic symptoms; or "substage b", those with systemic symptoms such as fever, loss of appetite, weight loss, and fatigue.
Of all cancers involving the same class of blood cell, 2.3% of cases are Burkitt lymphoma. Epstein-Barr virus infection is strongly correlated with this cancer.
Due to the causal relationship between "H. pylori" infection and MALT lymphoma, identification of the infection is mandatory. Histological examination of GI biopsies yields a sensitivity of 95% with five biopsies, but these should be from sites uninvolved by lymphoma and the identification of the organism may be compromised by areas of extensive intestinal metaplasia. As proton-pump inhibition can suppress infection, any treatment with this class of drug should be ceased 2 weeks prior to biopsy retrieval. Serology should be performed if histology is negative, to detect suppressed or recently treated infections. Following the recognition of the association of gastric MALT lymphoma with "H. pylori" infection, it was established that early-stage gastric disease could be cured by "H. pylori" eradication, which is now the mainstay of therapy. Fifty to 95% of cases achieve complete response (CR) with "H. pylori" treatment.
A t(11;18)(q21;q21) chromosomal translocation, giving rise to an "API2-MLT" fusion gene, is predictive of poor response to eradication therapy.
Historically, hematological malignancies have been most commonly divided by whether the malignancy is mainly located in the blood (leukemia) or in lymph nodes (lymphomas).
However, the influential WHO Classification (published in 2001) placed a greater emphasis on cell lineage.
Relative proportions of hematological malignancies in the United States
Primary cerebral lymphoma (or "primary central nervous system lymphoma") is a form of NHL. It is very rare in immunocompetent people, with an incidence of 5–30 cases per million person-years. However the incidence in immunocompromised individuals is greatly increased, up to 100 per million person-years.
Primary cerebral lymphoma is strongly associated with Epstein–Barr virus (EBV). The presence of EBV DNA in cerebrospinal fluid is highly suggestive of primary cerebral lymphoma.
Treatment of AIDS patients with antiretroviral drugs reduces the incidence of primary cerebral lymphoma.
Thyroid lymphoma shows a diagnostic and therapeutic challenge in many cases, because some manifestation patterns are similar to anaplastic thyroid cancer (ATC). Performance of fine-needle aspiration (FNA) has helped to distinguish these between two entities preoperatively.
Lymphoma is common in ferrets and is the most common cancer in young ferrets. There is some evidence that a retrovirus may play a role in the development of lymphoma like in cats. The most commonly affected tissues are the lymph nodes, spleen, liver, intestine, mediastinum, bone marrow, lung, and kidney.
In young ferrets, the disease progresses rapidly. The most common symptom is difficulty breathing caused by enlargement of the thymus. Other symptoms include loss of appetite, weight loss, weakness, depression, and coughing. It can also masquerade as a chronic disease such as an upper respiratory infection or gastrointestinal disease. In older ferrets, lymphoma is usually chronic and can exhibit no symptoms for years. Symptoms seen are the same as in young ferrets, plus splenomegaly, abdominal masses, and peripheral lymph node enlargement.
Diagnosis is through biopsy and x-rays. There may also be an increased lymphocyte count. Treatment includes surgery for solitary tumors, splenectomy (when the spleen is very large), and chemotherapy. The most common protocol uses prednisone, vincristine, and cyclophosphamide. Doxorubicin is used in some cases. Chemotherapy in relatively healthy ferrets is tolerated very well, but possible side effects include loss of appetite, depression, weakness, vomiting, and loss of whiskers. The white blood cell count must be monitored. Prednisone used alone can work very well for weeks to months, but it may cause resistance to other chemotherapy agents. Alternative treatments include vitamin C and Pau d'Arco (a bark extract).
The prognosis for lymphoma in ferrets depends on their health and the location of the cancer. Lymphoma in the mediastinum, spleen, skin, and peripheral lymph nodes has the best prognosis, while lymphoma in the intestine, liver, abdominal lymph nodes, and bone marrow has the worst.
For the analysis of a suspected "hematological malignancy", a complete blood count and blood film are essential, as malignant cells can show in characteristic ways on light microscopy. When there is lymphadenopathy, a biopsy from a lymph node is generally undertaken surgically. In general, a bone marrow biopsy is part of the "work up" for the analysis of these diseases. All specimens are examined microscopically to determine the nature of the malignancy. A number of these diseases can now be classified by cytogenetics (AML, CML) or immunophenotyping (lymphoma, myeloma, CLL) of the malignant cells.
The incidence of Hodgkin's disease in the general population is about 10–30 per million person-years. This increases to 170 per million person-years in HIV positive patients.
Diagnosis is usually based on repeated complete blood counts and a bone marrow examination following observations of the symptoms. Sometimes, blood tests may not show that a person has leukemia, especially in the early stages of the disease or during remission. A lymph node biopsy can be performed to diagnose certain types of leukemia in certain situations.
Following diagnosis, blood chemistry tests can be used to determine the degree of liver and kidney damage or the effects of chemotherapy on the patient. When concerns arise about other damage due to leukemia, doctors may use an X-ray, MRI, or ultrasound. These can potentially show leukemia's effects on such body parts as bones (X-ray), the brain (MRI), or the kidneys, spleen, and liver (ultrasound). CT scans can be used to check lymph nodes in the chest, though this is uncommon.
Despite the use of these methods to diagnose whether or not a patient has leukemia, many people have not been diagnosed because many of the symptoms are vague, non-specific, and can refer to other diseases. For this reason, the American Cancer Society estimates that at least one-fifth of the people with leukemia have not yet been diagnosed.
Flow cytometry is a diagnostic tool in order to count/visualize the amount of lymphatic cells in the body. T cells, B cells and NK cells are nearly impossible to distinguish under a microscope, therefore one must use a flow cytometer to distinguish them.
While it is generally considered incurable, CLL progresses slowly in most cases. Many people with CLL lead normal and active lives for many years—in some cases for decades. Because of its slow onset, early-stage CLL is, in general, not treated since it is believed that early CLL intervention does not improve survival time or quality of life. Instead, the condition is monitored over time to detect any change in the disease pattern.
The decision to start CLL treatment is taken when the patient's clinical symptoms or blood counts indicate that the disease has progressed to a point where it may affect the patient's quality of life.
Clinical "staging systems" such as the Rai four-stage system and the Binet classification can help to determine when and how to treat the patient.
Determining when to start treatment and by what means is often difficult; no survival advantage is seen in treating the disease very early. The National Cancer Institute Working Group has issued guidelines for treatment, with specific markers that should be met before it is initiated.
Cytogenetic analysis has shown different proportions and frequencies of genetic abnormalities in cases of ALL from different age groups. This information is particularly valuable for classification and can in part explain different prognosis of these groups. In regards to genetic analysis, cases can be stratified according to ploidy, number of sets of chromosomes in the cell, and specific genetic abnormalities, such as translocations. Hyperdiploid cells are defined as cells with more than 50 chromosomes, while hypodiploid is defined as cells with less than 44 choromosomes. Hyperdiploid cases tend to carry good prognosis while hypodiploid cases do not. For example, the most common specific abnormality in childhood B-ALL is the t(12;21) "ETV6"-"RUNX1" translocation, in which the "RUNX1" gene, encoding a protein involved in transcriptional control of hemopoiesis, has been translocated and repressed by the "ETV6"-"RUNX1" fusion protein.
Below is a table with the frequencies of some cytogenetic translocations and molecular genetic abnormalities in ALL.
Diagnosing ALL begins with a thorough medical history, physical examination, complete blood count, and blood smears. While many symptoms of ALL can be found in common illnesses, persistent or unexplained symptoms raise suspicion of cancer. Because many features on the medical history and exam are not specific to ALL, further testing is often needed. A large number of white blood cells and lymphoblasts in the circulating blood can be suspicious for ALL because they indicate a rapid production of lymphoid cells in the marrow. The higher these numbers typically points to a worse prognosis. While white blood cell counts at initial presentation can vary significantly, circulating lymphoblast cells are seen on peripheral blood smears in the majority of cases.
A bone marrow biopsy provides conclusive proof of ALL, typically with >20% of all cells being leukemic lymphoblasts. A lumbar puncture (also known as a spinal tap) can determine whether the spinal column and brain have been invaded. Brain and spinal column involvement can be diagnosed either through confirmation of leukemic cells in the lumbar puncture or through clinical signs of CNS leukemia as described above. Laboratory tests that might show abnormalities include blood count, kidney function, electrolyte, and liver enzyme tests.
Pathological examination, cytogenetics (in particular the presence of Philadelphia chromosome), and immunophenotyping establish whether the leukemic cells are myeloblastic (neutrophils, eosinophils, or basophils) or lymphoblastic (B lymphocytes or T lymphocytes). Cytogenetic testing on the marrow samples can help classify disease and predict how aggressive the disease course will be. Different mutations have been associated with shorter or longer survival. Immunohistochemical testing may reveal TdT or CALLA antigens on the surface of leukemic cells. TdT is a protein expressed early in the development of pre-T and pre-B cells, whereas CALLA is an antigen found in 80% of ALL cases and also in the "blast crisis" of CML.
Medical imaging (such as ultrasound or CT scanning) can find invasion of other organs commonly the lung, liver, spleen, lymph nodes, brain, kidneys, and reproductive organs.
Staging, determining the extent of the disease, is done with the Rai staging system or the Binet classification (see details) and is based primarily on the presence of a low platelet or red cell count. Early-stage disease does not need to be treated. CLL and SLL are considered the same underlying disease, just with different appearances.
Rai staging system
- "Stage 0": characterized by absolute lymphocytosis (>15,000/mm) without adenopathy, hepatosplenomegaly, anemia, or thrombocytopenia
- "Stage I": characterized by absolute lymphocytosis with lymphadenopathy without hepatosplenomegaly, anemia, or thrombocytopenia
- "Stage II:" characterized by absolute lymphocytosis with either hepatomegaly or splenomegaly with or without lymphadenopathy
- "Stage III": characterized by absolute lymphocytosis and anemia (hemoglobin <11 g/dL) with or without lymphadenopathy, hepatomegaly, or splenomegaly
- "Stage IV": characterized by absolute lymphocytosis and thrombocytopenia (<100,000/mm) with or without lymphadenopathy, hepatomegaly, splenomegaly, or anemia
Binet classification
- "Clinical stage A": characterized by no anemia or thrombocytopenia and fewer than three areas of lymphoid involvement (Rai stages 0, I, and II)
- "Clinical stage B": characterized by no anemia or thrombocytopenia with three or more areas of lymphoid involvement (Rai stages I and II)
- "Clinical stage C": characterized by anemia and/or thrombocytopenia regardless of the number of areas of lymphoid enlargement (Rai stages III and IV)
ANKL is treated similarly to most B-cell lymphomas. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant.
Most patients will die 2 years after diagnosis.
Hematologists base CLL treatment on both the stage and symptoms of the individual patient. A large group of CLL patients have low-grade disease, which does not benefit from treatment. Individuals with CLL-related complications or more advanced disease often benefit from treatment. In general, the indications for treatment are:
- Falling hemoglobin or platelet count
- Progression to a later stage of disease
- Painful, disease-related overgrowth of lymph nodes or spleen
- An increase in the rate of lymphocyte production
Leukemia is diagnosed in a variety of ways. Some diagnostic procedures include:
- A bone-marrow aspiration and biopsy; marrow may be removed by aspiration or a needle biopsy.
- A complete blood count, which is a measurement of size, number, and maturity of different blood cells in blood.
- Blood tests may include blood chemistry, evaluation of liver and kidney functions, and genetic studies.
- A lymph-node biopsy; lymph node tissue is surgically removed to examine under a microscope, to look for cancerous cells.
- A spinal tap: a special needle is placed into the lower back into the spinal canal, which is the area around the spinal cord. Cerebral spinal fluid is fluid that bathes the child's brain and spinal cord. A small amount of cerebral spinal fluid is sent for testing to determine if leukemia cells are present.