Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for a lupus anticoagulant is usually undertaken in the context of documented thrombosis, such as extremity phlebitis or dural sinus vein thrombosis. Patients with a well-documented (i.e., present at least twice) lupus anticoagulant and a history of thrombosis should be considered candidates for indefinite treatment with anticoagulants. Patients with no history of thrombosis and a lupus anticoagulant should probably be observed. Current evidence suggests that the risk of recurrent thrombosis in patients with an antiphospholipid antibody is enhanced whether that antibody is measured on serological testing or functional testing. The Sapporo criteria specify that both serological and functional tests must be positive to diagnose the antiphospholipid antibody syndrome.
Miscarriages may be more prevalent in patients with a lupus anticoagulant. Some of these miscarriages may "potentially" be prevented with the administration of aspirin and unfractionated heparin. The Cochrane Database of Systematic Reviews provide a deeper understanding on the subject.
Thrombosis is treated with anticoagulants (LMWHs and warfarin).
The presence of prolonged clotting times on a routine plasma test often triggers functional testing of the blood clotting function, as well as serological testing to identify common autoantibodies such as antiphospholipid antibodies. These antibodies tend to delay in-vitro coagulation in phospholipid-dependent laboratory tests such as the partial thromboplastin time.
The initial workup of a prolonged PTT is a mixing test whereby the patient's plasma is mixed with normal pooled plasma and the clotting is re-assessed. If a clotting inhibitor such as a lupus anticoagulant is present, the inhibitor will interact with the normal pooled plasma and the clotting time will remain abnormal. However, if the clotting time of the mixed plasma corrects towards normal, the diagnosis of an inhibitor such as the lupus anticoagulant is excluded; the diagnosis is a deficient quantity of clotting factor that is replenished by the normal plasma.
If the mixing test indicates an inhibitor, diagnosis of a lupus anticoagulant is then confirmed with phospholipid-sensitive functional clotting testing, such as the dilute Russell's viper venom time, or the Kaolin clotting time. Excess phospholipid will eventually correct the prolongation of these prolonged clotting tests (conceptually known as "phospholipid neutralization" in the clinical coagulation laboratory), confirming the diagnosis of a lupus anticoagulant.
Antiphospholipid syndrome is tested for in the laboratory using both liquid phase coagulation assays (lupus anticoagulant) and solid phase ELISA assays (anti-cardiolipin antibodies).
Genetic thrombophilia is part of the differential diagnosis of APS and can coexist in some APS patients. Presence of genetic thrombophilia may determine the need for anticoagulation therapy. Thus genetic thrombophilia screening can consist of:
- Further studies for factor V Leiden variant and the prothrombin G20210A mutation, factor VIII levels, MTHFR mutation.
- Levels of protein C, free and total protein S, factor VIII, antithrombin, plasminogen, tissue plasminogen activator (TPA) and plasminogen activator inhibitor-1 (PAI-1)
The testing of antibodies to the possible individual targets of aPL such as β glycoprotein 1 and antiphosphatidyl serine is currently under debate as testing for anticardiolipin appears to be currently sensitive and specific for diagnosis of APS even though cardiolipin is not considered an in vivo target for antiphospholipid antibodies.
Anti-cardiolipin antibodies can be detected using an enzyme-linked immunosorbent assay (ELISA) immunological test, which screens for the presence of βglycoprotein 1 dependent anticardiolipin antibodies (ACA).
A low platelet count and positivity for antibodies against β-glycoprotein 1 or phosphatidylserine may also be observed in a positive diagnosis.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
HIT may be suspected if blood tests show a falling platelet count in someone receiving heparin, even if the heparin has already been discontinued. Professional guidelines recommend that people receiving heparin have a complete blood count (which includes a platelet count) on a regular basis while receiving heparin.
However, not all people with a falling platelet count while receiving heparin turn out to have HIT. The timing, severity of the thrombocytopenia, the occurrence of new thrombosis, and the presence of alternative explanations, all determine the likelihood that HIT is present. A commonly used score to predict the likelihood of HIT is the "4 Ts" score introduced in 2003. A score of 0–8 points is generated; if the score is 0-3, HIT is unlikely. A score of 4–5 indicates intermediate probability, while a score of 6–8 makes it highly likely. Those with a high score may need to be treated with an alternative drug while more sensitive and specific tests for HIT are performed, while those with a low score can safely continue receiving heparin as the likelihood that they have HIT is extremely low. In an analysis of the reliability of the 4T score, a low score had a negative predictive value of 0.998, while an intermediate score had a positive predictive value of 0.14 and a high score a positive predictive value of 0.64; intermediate and high scores therefore warrant further investigation.
The first screening test in someone suspected of having HIT is aimed at detecting antibodies against heparin-PF4 complexes. This may be with a laboratory test of the ELISA (enzyme-linked immunosorbent assay) type. The ELISA test, however, detects all circulating antibodies that bind heparin-PF4 complexes, and may also falsely identify antibodies that do not cause HIT. Therefore, those with a positive ELISA are tested further with a functional assay. This test uses platelets and serum from the patient; the platelets are washed and mixed with serum and heparin. The sample is then tested for the release of serotonin, a marker of platelet activation. If this serotonin release assay (SRA) shows high serotonin release, the diagnosis of HIT is confirmed. The SRA test is difficult to perform and is usually only done in regional laboratories.
If someone has been diagnosed with HIT, some recommend routine Doppler sonography of the leg veins to identify deep vein thromboses, as this is very common in HIT.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
Some physicians make a diagnosis on the basis of the American College of Rheumatology (ACR) classification criteria. The criteria, however, were established mainly for use in scientific research including use in randomized controlled trials which require higher confidence levels, so many people with SLE may not pass the full criteria.
Antinuclear antibody (ANA) testing and anti-extractable nuclear antigen (anti-ENA) form the mainstay of serologic testing for SLE. Several techniques are used to detect ANAs. Clinically the most widely used method is indirect immunofluorescence (IF). The pattern of fluorescence suggests the type of antibody present in the people's serum. Direct immunofluorescence can detect deposits of immunoglobulins and complement proteins in the people's skin. When skin not exposed to the sun is tested, a positive direct IF (the so-called lupus band test) is an evidence of systemic lupus erythematosus.
ANA screening yields positive results in many connective tissue disorders and other autoimmune diseases, and may occur in normal individuals. Subtypes of antinuclear antibodies include anti-Smith and anti-double stranded DNA (dsDNA) antibodies (which are linked to SLE) and anti-histone antibodies (which are linked to drug-induced lupus). Anti-dsDNA antibodies are highly specific for SLE; they are present in 70% of cases, whereas they appear in only 0.5% of people without SLE. The anti-dsDNA antibody titers also tend to reflect disease activity, although not in all cases. Other ANA that may occur in people with SLE are anti-U1 RNP (which also appears in systemic sclerosis and mixed connective tissue disease), SS-A (or anti-Ro) and SS-B (or anti-La; both of which are more common in Sjögren's syndrome). SS-A and SS-B confer a specific risk for heart conduction block in neonatal lupus.
Other tests routinely performed in suspected SLE are complement system levels (low levels suggest consumption by the immune system), electrolytes and kidney function (disturbed if the kidney is involved), liver enzymes, and complete blood count.
The lupus erythematosus (LE) cell test was commonly used for diagnosis, but it is no longer used because the LE cells are only found in 50–75% of SLE cases, and they are also found in some people with rheumatoid arthritis, scleroderma, and drug sensitivities. Because of this, the LE cell test is now performed only rarely and is mostly of historical significance.
Suspicion of factor V Leiden being the cause for any thrombotic event should be considered in any Caucasian patient below the age of 45, or in any person with a family history of venous thrombosis.
There are a few different methods by which this condition can be diagnosed. Most laboratories screen 'at risk' patients with either a snake venom (e.g. dilute Russell's viper venom time) based test or an aPTT based test. In both methods, the time it takes for blood to clot is decreased in the presence of the factor V Leiden mutation. This is done by running two tests simultaneously; one test is run in the presence of activated protein C (APC) and the other, in the absence. A ratio is determined based on the two tests and the results signify to the laboratory whether APC is working or not.
There is also a genetic test that can be done for this disorder. The mutation (a 1691G→A substitution) removes a cleavage site of the restriction endonuclease "MnlI", so PCR, treatment with "MnlI", and then DNA electrophoresis will give a diagnosis. Other PCR based assays such as iPLEX can also identify zygosity and frequency of the variant.
In general, the indications for anticoagulation during pregnancy are the same as the general population. This includes (but is not limited to) a recent history of deep venous thrombosis (DVT) or pulmonary embolism, a metallic prosthetic heart valve, and atrial fibrillation in the setting of structural heart disease.
In addition to these indications, anticoagulation may be of benefit in individuals with lupus erythematosus, individuals who have a history of DVT or PE associated with a previous pregnancy, and even with individuals with a history of coagulation factor deficiencies and DVT not associated with a previous pregnancy.
In pregnant women with a history of recurrent miscarriage, anticoagulation seems to increase the live birth rate among those with antiphospholipid syndrome and perhaps those with congenital thrombophilia but not in those with unexplained recurrent miscarriage.
Given the fact that HIT predisposes strongly to new episodes of thrombosis, it is not sufficient to simply discontinue the heparin administration. Generally, an alternative anticoagulant is needed to suppress the thrombotic tendency while the generation of antibodies stops and the platelet count recovers. To make matters more complicated, the other most commonly used anticoagulant, warfarin, should not be used in HIT until the platelet count is at least 150 x 10^9/L because there is a very high risk of warfarin necrosis in people with HIT who have low platelet counts. Warfarin necrosis is the development of skin gangrene in those receiving warfarin or a similar vitamin K inhibitor. If the patient was receiving warfarin at the time when HIT is diagnosed, the activity of warfarin is reversed with vitamin K. Transfusing platelets is discouraged, as there is a theoretical risk that this may worsen the risk of thrombosis; the platelet count is rarely low enough to be the principal cause of significant hemorrhage.
Various non-heparin agents are used to provide anticoagulation in those with strongly suspected or proven HIT: danaparoid, fondaparinux, bivalirudin and argatroban. These are alternatives to heparin therapy. Not all agents are available in all countries, and not all are approved for this specific use. For instance, argatroban is only recently licensed in the United Kingdom, and danaparoid is not available in the United States. Fondaparinux, a Factor Xa inhibitor, is commonly used off label for HIT treatment in the United States.
According to a systematic review, people with HIT treated with lepirudin showed a relative risk reduction of clinical outcome (death, amputation, etc.) to be 0.52 and 0.42 when compared to patient controls. In addition, people treated with argatroban for HIT showed a relative risk reduction of the above clinical outcomes to be 0.20 and 0.18. Lepirudin production stopped on May 31, 2012.
Antinuclear antibodies are usually positive in drug induced Lupus. Anti-Neutrophil Cytoplasmic antibodies (ANCA) can also be positive in association with certain drugs. Furthermore, Anti-Histone antibodies can also be positive in drug induced lupus.
Anti-Histone antibodies are positive in up to 95% of patients with drug induced lupus. DIThe most common medications associated with drug induced lupus are hydralazine, procainamide, isoniazid, methyldopa, chlorpromazine, quinidine, and minocycline.
Prevention of DVT and other types of venous thrombosis may be required if certain predisposing risk factors are present. One example from Sweden is based on the point system below, where points are summed to give the appropriate prophylaxis regimen.
After adding any risk factors together, a total of one point or less indicates no preventive action is needed. A total of two points indicates short-term prophylaxis, e.g. with LMWH, may be used in temporary risk factors, as well as administering prophylactic treatment seven days postpartum, starting a couple of hours after birth. A total of 3 points increases the necessary duration of "post partum" prophylaxis to six weeks.
A risk score of four points or higher means prophylaxis in the "ante partum" period is needed, as well as at least six weeks "post partum". A previous distal DVT indicates a minimum of 12 weeks (three months) of therapeutic anticoagulation therapy. A previous proximal DVT or pulmonary embolism requires a minimum of 26 weeks (6.5 months) of therapy If the therapy duration reaches delivery time, the remaining duration may be given after delivery, possibly extending the minimum of six weeks of "post partum" therapy. In a very high risk, high-dose "ante partum" prophylaxis should be continued at least 12 weeks after delivery.
Women with antiphospholipid syndrome should have an additional low-dose prophylactic treatment of aspirin.
Many conditions mimic or may be mistaken for warfarin necrosis, including pyoderma gangrenosum or necrotizing fasciitis. Warfarin necrosis is also different from another drug eruption associated with warfarin, purple toe syndrome, which usually occurs three to eight weeks after the start of anticoagulation therapy. No report has described this disorder in the immediate postpartum period in patients with protein S deficiency.
For the diagnosis of lupus 4 out of 11 signs must be present.
Testing may include:
- Antinuclear antibody (ANA)
- CBC with differential
- Chest x-ray
- Serum creatinine
- Urinalysis
Studies have found that about 5 percent of Caucasians in North America have factor V Leiden. The condition is less common in Latin Americans and African-Americans and is extremely rare in people of Asian descent.
Up to 30 percent of patients who present with deep vein thrombosis (DVT) or pulmonary embolism have this condition. The risk of developing a clot in a blood vessel depends on whether a person inherits one or two copies of the factor V Leiden mutation. Inheriting one copy of the mutation from a parent (heterozygous) increases by fourfold to eightfold the chance of developing a clot. People who inherit two copies of the mutation (homozygous), one from each parent, may have up to 80 times the usual risk of developing this type of blood clot. Considering that the risk of developing an abnormal blood clot averages about 1 in 1,000 per year in the general population, the presence of one copy of the factor V Leiden mutation increases that risk to between 4 in 1,000 to 8 in 1,000. Having two copies of the mutation may raise the risk as high as 80 in 1,000. It is unclear whether these individuals are at increased risk for "recurrent" venous thrombosis. While only 1 percent of people with factor V Leiden have two copies of the defective gene, these homozygous individuals have a more severe clinical condition. The presence of acquired risk factors for venous thrombosis—including smoking, use of estrogen-containing (combined) forms of hormonal contraception, and recent surgery—further increase the chance that an individual with the factor V Leiden mutation will develop DVT.
Women with factor V Leiden have a substantially increased risk of clotting in pregnancy (and on estrogen-containing birth control pills or hormone replacement) in the form of deep vein thrombosis and pulmonary embolism. They also may have a small increased risk of preeclampsia, may have a small increased risk of low birth weight babies, may have a small increased risk of miscarriage and stillbirth due to either clotting in the placenta, umbilical cord, or the fetus (fetal clotting may depend on whether the baby has inherited the gene) or influences the clotting system may have on placental development. Note that many of these women go through one or more pregnancies with no difficulties, while others may repeatedly have pregnancy complications, and still others may develop clots within weeks of becoming pregnant.
The cardinal features of purpura investigations are the same as those of disseminated intravascular coagulation: prolonged plasma clotting times, thrombocytopenia, reduced plasma fibrinogen concentration, increased plasma fibrin-degradation products and occasionally microangiopathic haemolysis.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
The diagnosis for deficiency of protein S can be done via reviewing family history of condition and genetic testing, as well as the following:
- Protein S antigen test
- Coagulation test (prothrombin time test)
- Thrombotic disease investigation
- Factor V Leiden test
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
Lupus erythematosus may manifest as systemic disease or in a purely cutaneous form also known as "incomplete lupus erythematosus". Lupus has four main types:
- systemic
- discoid
- drug-induced
- neonatal
Of these, systemic lupus erythematosus (also known as SLE) is the most common and serious form.
A more thorough categorization of lupus includes the following types:
- acute cutaneous lupus erythematosus
- subacute cutaneous lupus erythematosus
- discoid lupus erythematosus (chronic cutaneous)
- childhood discoid lupus erythematosus
- generalized discoid lupus erythematosus
- localized discoid lupus erythematosus
- chilblain lupus erythematosus (Hutchinson)
- lupus erythematosus-lichen planus overlap syndrome
- lupus erythematosus panniculitis (lupus erythematosus profundus)
- tumid lupus erythematosus
- verrucous lupus erythematosus (hypertrophic lupus erythematosus)
- cutaneous lupus mucinosis
- complement deficiency syndromes
- drug-induced lupus erythematosus
- neonatal lupus erythematosus
- systemic lupus erythematosus
In terms of treatment for protein S deficiency the following are consistent with the "management" (and administration of) individuals with this condition ( it should be noted that the prognosis for "inherited" homozygotes is usually in line with a higher incidence of thrombosis for the affected individual):
Neonatal lupus is the occurrence of SLE symptoms in an infant born from a mother with SLE, most commonly presenting with a rash resembling discoid lupus erythematosus, and sometimes with systemic abnormalities such as heart block or hepatosplenomegaly. Neonatal lupus is usually benign and self-limited. Still, identification of mothers at highest risk for complications allows for prompt treatment before or after birth. In addition, SLE can flare up during pregnancy, and proper treatment can maintain the health of the mother for longer.
SLE causes an increased rate of fetal death "in utero" and spontaneous abortion (miscarriage). The overall live-birth rate in SLE patient has been estimated to be 72%. Pregnancy outcome appears to be worse in SLE patients whose disease flares up during pregnancy.
Miscarriages in the first trimester appear either to have no known cause or to be associated with signs of active SLE. Later losses appear to occur primarily due to the antiphospholipid syndrome, in spite of treatment with heparin and aspirin. All women with lupus, even those without previous history of miscarriage, are recommended to be screened for antiphospholipid antibodies, both the lupus anticoagulant (the RVVT and sensitive PTT are the best screening battery) and anticardiolipin antibodies.