Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Amblyopia is diagnosed by identifying low visual acuity in one or both eyes, out of proportion to the structural abnormality of the eye and excluding other visual disorders as causes for the lowered visual acuity. It can be defined as an interocular difference of two lines or more in acuity (e.g. on Snellen chart) when the eye optics is maximally corrected. In young children, visual acuity is difficult to measure and can be estimated by observing the reactions of the patient reacts when one eye is covered, including observing the patient's ability to follow objects with one eye.
Stereotests like the Lang stereotest are not reliable exclusion tests for amblyopia. A person who passes the Lang stereotest test is unlikely to have strabismic amblyopia, but could nonetheless have refractive or deprivational amblyopia. It has been suggested that binocular retinal birefringence scanning may be able to identify, already in very young children, amblyopia that is associated with strabismus, microstrabismus, or reduced fixation accuracy. Diagnosis and treatment of amblyopia as early as possible is necessary to keep the vision loss to a minimum.
Screening for amblyopia is recommended in all people between three and five years of age.
Retinal detachment can be examined by fundus photography or ophthalmoscopy. Fundus photography generally needs a considerably larger instrument than the ophthalmoscope, but has the advantage of availing the image to be examined by a specialist at another location and/or time, as well as providing photo documentation for future reference. Modern fundus photographs generally recreate considerably larger areas of the fundus than what can be seen at any one time with handheld ophthalmoscopes.
Ultrasound has diagnostic accuracy similar to that of examination by an ophthalmologist. The recent meta-analysis shows the diagnostic accuracy of emergency department (ED) ocular ultrasonography is high. The sensitivity and specificity ranged from 97% to 100% and 83% to 100%. The typical feature of retinal detachment when viewed on ultrasound is "flying angel sign". It shows the detached retina moving with a fixed point under the B mode, linear probe 10 MHz.
A minority of retinal detachments result from trauma, including blunt blows to the orbit, penetrating trauma, and concussions to the head. A retrospective Indian study of more than 500 cases of rhegmatogenous detachments found that 11% were due to trauma, and that gradual onset was the norm, with over 50% presenting more than one month after the inciting injury.
Hyperopia is typically classified according to clinical appearance, its severity, or how it relates to the eye's accommodative status.
There are three clinical categories of hyperopia.
- Simple hyperopia
- Pathological hyperopia
- Functional hyperopia
There are also three categories severity:
- Low
- Moderate
- High
Other common types of refractive errors are near-sightedness, astigmatism, and presbyopia.
Prior to any physical examination, the diagnosis of keratoconus frequently begins with an ophthalmologist's or optometrist's assessment of the person's medical history, particularly the chief complaint and other visual symptoms, the presence of any history of ocular disease or injury which might affect vision, and the presence of any family history of ocular disease. An eye chart, such as a standard Snellen chart of progressively smaller letters, is then used to determine the person's visual acuity. The eye examination may proceed to measurement of the localized curvature of the cornea with a manual keratometer, with detection of irregular astigmatism suggesting a possibility of keratoconus. Severe cases can exceed the instrument's measuring ability. A further indication can be provided by retinoscopy, in which a light beam is focused on the person's retina and the reflection, or reflex, observed as the examiner tilts the light source back and forth. Keratoconus is amongst the ophthalmic conditions that exhibit a scissor reflex action of two bands moving toward and away from each other like the blades of a pair of scissors.
If keratoconus is suspected, the ophthalmologist or optometrist will search for other characteristic findings of the disease by means of slit lamp examination of the cornea. An advanced case is usually readily apparent to the examiner, and can provide for an unambiguous diagnosis prior to more specialized testing. Under close examination, a ring of yellow-brown to olive-green pigmentation known as a Fleischer ring can be observed in around half of keratoconic eyes. The Fleischer ring, caused by deposition of the iron oxide hemosiderin within the corneal epithelium, is subtle and may not be readily detectable in all cases, but becomes more evident when viewed under a cobalt blue filter. Similarly, around 50% of subjects exhibit Vogt's striae, fine stress lines within the cornea caused by stretching and thinning. The striae temporarily disappear while slight pressure is applied to the eyeball. A highly pronounced cone can create a V-shaped indentation in the lower eyelid when the person's gaze is directed downwards, known as Munson's sign. Other clinical signs of keratoconus will normally have presented themselves long before Munson's sign becomes apparent, and so this finding, though a classic sign of the disease, tends not to be of primary diagnostic importance.
A handheld keratoscope, sometimes known as "Placido's disk", can provide a simple noninvasive visualization of the surface of the cornea by projecting a series of concentric rings of light onto the cornea. A more definitive diagnosis can be obtained using corneal topography, in which an automated instrument projects the illuminated pattern onto the cornea and determines its topography from analysis of the digital image. The topographical map indicates any distortions or scarring in the cornea, with keratoconus revealed by a characteristic steepening of curvature which is usually below the centreline of the eye. The technique can record a snapshot of the degree and extent of the deformation as a benchmark for assessing its rate of progression. It is of particular value in detecting the disorder in its early stages when other signs have not yet presented.
Once keratoconus has been diagnosed, its degree may be classified by several metrics:
- The steepness of greatest curvature from 'mild' ( 52 D);
- The morphology of the cone: 'nipple' (small: 5 mm and near-central), 'oval' (larger, below-center and often sagging), or 'globus' (more than 75% of cornea affected);
- The corneal thickness from mild (> 506 μm) to advanced (< 446 μm).
Increasing use of corneal topography has led to a decline in use of these terms.
Serious complications of cataract surgery include retinal detachment and endophthalmitis. In both cases, patients notice a sudden decrease in vision. In endophthalmitis, patients often describe pain. Retinal detachment frequently presents with unilateral visual field defects, blurring of vision, flashes of light, or floating spots.
The risk of retinal detachment was estimated as about 0.4% within 5.5 years, corresponding to a 2.3-fold risk increase compared to naturally expected incidence, with older studies reporting a substantially higher risk. The incidence is increasing over time in a somewhat linear manner, and the risk increase lasts for at least 20 years after the procedure. Particular risk factors are younger age, male sex, longer axial length, and complications during surgery. In the highest risk group of patients, the incidence of pseudophakic retinal detachment may be as high as 20%.
The risk of endophthalmitis occurring after surgery is less than one in 1000.
Corneal edema and cystoid macular edema are less serious but more common, and occur because of persistent swelling at the front of the eye in corneal edema or back of the eye in cystoid macular edema. They are normally the result of excessive inflammation following surgery, and in both cases, patients may notice blurred, foggy vision. They normally improve with time and with application of anti-inflammatory drops. The risk of either occurring is around one in 100. It is unclear whether NSAIDs or corticosteroids are superior at reducing postoperative inflammation.
Posterior capsular opacification, also known as after-cataract, is a condition in which months or years after successful cataract surgery, vision deteriorates or problems with glare and light scattering recur, usually due to thickening of the back or posterior capsule surrounding the implanted lens, so-called 'posterior lens capsule opacification'. Growth of natural lens cells remaining after the natural lens was removed may be the cause, and the younger the patient, the greater the chance of this occurring. Management involves cutting a small, circular area in the posterior capsule with targeted beams of energy from a laser, called capsulotomy, after the type of laser used. The laser can be aimed very accurately, and the small part of the capsule which is cut falls harmlessly to the bottom of the inside of the eye. This procedure leaves sufficient capsule to hold the lens in place, but removes enough to allow light to pass directly through to the retina. Serious side effects are rare. Posterior capsular opacification is common and occurs following up to one in four operations, but these rates are decreasing following the introduction of modern intraocular lenses together with a better understanding of the causes.
Vitreous touch syndrome is a possible complication of intracapsular cataract extraction.
It is important that people be examined by someone specializing in low vision care prior to other rehabilitation training to rule out potential medical or surgical correction for the problem and to establish a careful baseline refraction and prescription of both normal and low vision glasses and optical aids. Only a doctor is qualified to evaluate visual functioning of a compromised visual system effectively. The American Medical Association provides an approach to evaluating visual loss as it affects an individual's ability to perform activities of daily living.
Screening adults who have no symptoms is of uncertain benefit.
Between 2 and 5% of the population in western countries have amblyopia. In the U.K., 90% of visual health appointments in the child are concerning amblyopia.
Depending on the chosen criterion for diagnosis, between 1 and 4% of the children have amblyopia.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Visual impairment has the ability to create consequences for health and well being. Visual impairment is increasing especially among older people. It is recognized that those individuals with visual impairment are likely to have limited access to information and healthcare facilities, and may not receive the best care possible because not all health care professionals are aware of specific needs related to vision.
- A prerequisite of effective health care could very well be having staff that are aware that people may have problems with vision.
- Communication and different ways of being able to communicate with visually impaired clients must be tailored to individual needs and available at all times.
Quantitative comparisons between different eyes and conditions are usually made using RMS (root mean square). To measure RMS for each type of aberration involves squaring the difference between the aberration and mean value and averaging it across the pupil area. Different kinds of aberrations may have equal RMS across the pupil but have different effects on vision, therefore, RMS error is unrelated to visual performance. The majority of eyes have total RMS values less than 0.3 µm.
The most common method of classifying the shapes of aberration maps is to consider each map as the sum of fundamental shapes or basis functions. One popular set of basis functions are the Zernike polynomials. Each aberration may be positive or negative in value and induces predictable alterations in the image quality.
Because there is no limit to the number of terms that may be used by Zernike polynomials, vision scientists use the first 15 polynomials, based on the fact that they are enough to obtain a highly accurate description of the most common aberrations found in human eye. Among these the most important Zernike coefficients affecting visual quality are coma, spherical aberration, and trefoil.
Zernike polynomials are usually expressed in terms of polar coordinates (ρ,θ), where ρ is radial coordinate and θ is the angle. The advantage of expressing the aberrations in terms of these polynomials includes the fact that the polynomials are independent of one another. For each polynomial the mean value of the aberration across the pupil is zero and the value of the coefficient gives the RMS error for that particular aberration (i.e. the coefficients show the relative contribution of each Zernike mode to the total wavefront error in the eye). However these polynomials have the disadvantage that their coefficients are only valid for the particular pupil diameter they are determined for.
In each Zernike polynomial formula_1, the subscript n is the order of aberration, all the Zernike polynomials in which n=3 are called third-order aberrations and all the polynomials with n=4, fourth order aberrations and so on. formula_2 and formula_3 are usually called secondary Astigmatism and should not cause confusion. The superscript m is called the angular frequency and denotes the number of times the Wavefront pattern repeats itself.
List of Zernike modes and their common names:
A diagnosis of far-sightedness can be made via a slit lamp test which examines the cornea, conjunctiva, and iris.
In severe cases of hyperopia from birth, the brain has difficulty in merging the images that each individual eye sees. This is because the images the brain receives from each eye are always blurred. A child with severe hyperopia can never see objects in detail. If the brain never learns to see objects in detail, then there is a high chance of one eye becoming dominant. The result is that the brain will block the impulses of the non-dominant eye. In contrast, the child with myopia can see objects close to the eye in detail and does learn at an early age to see detail in objects.
Corrective lenses provide a range of vision correction, some as high as +4.0 diopter. Some with presbyopia choose varifocal or bifocal lenses to eliminate the need for a separate pair of reading glasses; specialized preparations of varifocals or bifocals usually require the services of an optometrist. Some newer bifocal or varifocal spectacle lenses attempt to correct both near and far vision with the same lens.
Contact lenses can also be used to correct the focusing loss that comes along with presbyopia. Multifocal contact lenses can be used to correct vision for both the near and the far. Some people choose contact lenses to correct one eye for near and one eye for far with a method called monovision.
Diagnosis of convergence insufficiency is made by an eye care professional skilled in binocular vision dysfunctions to rule out any organic disease. Convergence insufficiency characterized by one or more of the following diagnostic findings: Patient symptoms, High exophoria at near, reduced accommodative convergence/accommodation ratio, receded near point of convergence, low fusional vergence ranges and/or facility. Some patients with convergence insufficiency have concurrent accommodative insufficiency—accommodative amplitudes should therefore also be measured in symptomatic patients.
Low order aberrations (hyperopia, Myopia and regular astigmatism), are correctable by eyeglasses, soft contact lenses and refractive surgery. Neither spectacles nor soft contact lenses nor routine keratorefractive surgery adequately corrects high order aberrations. Significant high order aberration usually requires a rigid gas-permeable contact lens for optimal visual rehabilitation.
Customized Wavefront-guided refractive corneal laser treatments are designed to reduce existing aberrations and to help prevent the creation of new aberrations. The wavefront map of the eye may be transferred to a Lasik system and enable the surgeon to treat the aberration. Perfect alignment of the treatment and the pupil on which the Wavefront is measured is required, which is usually achieved through iris feature detection. An efficient eye tracking system and small spot size laser is necessary for treatment . Wavefront customization of ablation increases the depth of ablation because additional corneal tissue must be ablated to compensate for the high order aberrations. Actual results with Wavefront guided LASIK showed that not only it cannot remove HOA but also the optical aberrations are increased. However, the amount of increase in aberrations are less than conventional Lasik. Corneal optical aberrations after photorefractive keratectomy with a larger ablation zone and a transition zone are less pronounced and more physiologic than those associated with first-generation (5 mm) ablations with no transition zone. An upcoming systematic review will seek to compare the safety and effectiveness of wavefront excimer laser refractive surgery with conventional excimer laser refractive surgery, and will measure differences in residual higher order aberrations between the two procedures.
Aspherical intraocular lenses (IOLs) have been used clinically to compensate for positive corneal spherical aberrations. Although Aspherical IOLs may give better contrast sensitivity, it is doubtful, whether they have a beneficial effect on distance visual acuity. Conventional (not Aspherical) IOLs give better depth of focus and better near vision. The reason for improved depth of focus in conventional lenses is linked to residual spherical aberration. The small improvement in depth of focus with the conventional IOLs enhances uncorrected near vision and contribute to reading ability.
Wavefront customized lenses can be used in eyeglasses. Based on Wavefront map of the eye and with the use of laser a lens is shaped to compensate for the aberrations of the eye and then put in the eyeglasses. Ultraviolet Laser can alter the refractive index of curtain lens materials such as epoxy polymer on a point by point basis in order to generate the desired refractive profile.
Wavefront customized contact lenses can theoretically correct HOA. The rotation and decentration reduces the predictability of this method.
New surgical procedures may also provide solutions for those who do not want to wear glasses or contacts, including the implantation of accommodative intraocular lenses. INTRACOR has now been approved in Europe for treatment of both eyes (turning both corneas into multifocal lenses and so dispensing with the need for reading glasses).
Another treatment option for the correction of presbyopia in patients with emmetropia, as well as in patients with myopia, hyperopia and astigmatism is laser blended vision. This procedure uses laser refractive surgery to correct the dominant eye mainly for distance vision and the nondominant eye mainly for near vision, while the depth of field (i.e. the range of distances at which the image is in focus) of each eye is increased. As a result of the increased depth of field, the brain merges the two images, creating a blend zone, i.e. a zone which is in focus for both eyes. This allows the patient to see near, intermediate and far without glasses. Some literature also suggests the benefits achieved include the brain learning to adapt, assimilating two images, one of which is out of focus. Over time, many patients report they are unaware one eye is out of focus.
Surgically implanted corneal inlays are another treatment option for presbyopia. Corneal inlays typically are implanted in the nondominant eye to minimize impact to binocular uncorrected distance vision. They seek to improve near vision in one of three ways: changing the central refractive index, increasing the depth of focus through the use of a pinhole, and reshaping the central cornea.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
The diagnosis usually starts with a dilated examination of the retina, followed with confirmation by optical coherence tomography and fluorescein angiography. The angiography test will usually show one or more fluorescent spots with fluid leakage. In 10%-15% of the cases these will appear in a "classic" smoke stack shape. Differential diagnosis should be immediately performed to rule out retinal detachment, which is a medical emergency.
A clinical record should be taken to keep a timeline of the detachment. An Amsler grid can be useful in documenting the precise area of the visual field involved. The affected eye will sometimes exhibit a refractive spectacle prescription that is more far-sighted than the fellow eye due to the decreased focal length caused by the raising of the retina.
Indocyanine green angiography can be used to assess the health of the retina in the affected area which can be useful in making a treatment decision.
In an eye with iridocyclitis, (inflammation of both the iris and ciliary body), the involved pupil will be smaller than the uninvolved, due to reflex muscle spasm of the sphincter muscle of the iris.
Generally, conjunctivitis does not affect the pupils.
With acute angle-closure glaucoma, the pupil is generally fixed in mid-position, oval, and responds sluggishly to light, if at all.
Shallow anterior chamber depth may indicate a predisposition to one form of glaucoma (narrow angle) but requires slit-lamp examination or other special techniques to determine it.
In the presence of a "red eye", a shallow anterior chamber may indicate acute glaucoma, which requires immediate attention.
The Ishihara color test, which consists of a series of pictures of colored spots, is the test most often used to diagnose red–green color deficiencies. A figure (usually one or more Arabic digits) is embedded in the picture as a number of spots in a slightly different color, and can be seen with normal color vision, but not with a particular color defect. The full set of tests has a variety of figure/background color combinations, and enable diagnosis of which particular visual defect is present. The anomaloscope, described above, is also used in diagnosing anomalous trichromacy.
Because the Ishihara color test contains only numerals, it may not be useful in diagnosing young children, who have not yet learned to use numerals. In the interest of identifying these problems early on in life, alternative color vision tests were developed using only symbols (square, circle, car).
Besides the Ishihara color test, the US Navy and US Army also allow testing with the Farnsworth Lantern Test. This test allows 30% of color deficient individuals, whose deficiency is not too severe, to pass.
Another test used by clinicians to measure chromatic discrimination is the Farnsworth-Munsell 100 hue test. The patient is asked to arrange a set of colored caps or chips to form a gradual transition of color between two anchor caps.
The HRR color test (developed by Hardy, Rand, and Rittler) is a red–green color test that, unlike the Ishihara, also has plates for the detection of the tritan defects.
Most clinical tests are designed to be fast, simple, and effective at identifying broad categories of color blindness. In academic studies of color blindness, on the other hand, there is more interest in developing flexible tests to collect thorough datasets, identify copunctal points, and measure just noticeable differences.
Diagnosing CVI is difficult. A diagnosis is usually made when visual performance is poor but it is not possible to explain this from an eye examination. Before CVI was widely known among professionals, some would conclude that the patient was faking their problems or had for some reason engaged in self-deception. However, there are now testing techniques that do not depend on the patient's words and actions, such as fMRI scanning, or the use of electrodes to detect responses to stimuli in both the retina and the brain. These can be used to verify that the problem is indeed due to a malfunction of the visual cortex and/or the posterior visual pathway.
Diagnosis of age-related macular degeneration rests on signs in the macula, irrespective of visual acuity. Diagnosis of AMD may include the following procedures and tests:
- The transition from dry to wet AMD can happen rapidly, and if it is left untreated can lead to legal blindness in as little as six months. To prevent this from occurring and to initiate preventative strategies earlier in the disease process, dark adaptation testing may be performed. A dark adaptometer can detect subclinical AMD at least three years earlier than it is clinically evident.
- There is a loss of contrast sensitivity, so that contours, shadows, and color vision are less vivid. The loss in contrast sensitivity can be quickly and easily measured by a contrast sensitivity test like Pelli Robson performed either at home or by an eye specialist.
- When viewing an Amsler grid, some straight lines appear wavy and some patches appear blank
- When viewing a Snellen chart, at least 2 lines decline
- Preferential hyperacuity perimetry changes (for wet AMD)
- In dry macular degeneration, which occurs in 85–90 percent of AMD cases, drusen spots can be seen in Fundus photography
- In wet macular degeneration, angiography can visualize the leakage of bloodstream behind the macula. Fluorescein angiography allows for the identification and localization of abnormal vascular processes.
- Using an electroretinogram, points in the macula with a weak or absent response compared to a normal eye may be found
- Farnsworth-Munsell 100 hue test and Maximum Color Contrast Sensitivity test (MCCS) for assessing color acuity and color contrast sensitivity
- Optical coherence tomography is now used by most ophthalmologists in the diagnosis and the follow-up evaluation of the response to treatment with antiangiogenic drugs.
Convergence insufficiency may be treated with convergence exercises prescribed by an eyecare specialist trained in orthoptics or binocular vision anomalies. Some cases of convergence insufficiency are successfully managed by prescription of eyeglasses, sometimes with therapeutic prisms.
Pencil push-ups therapy is performed at home. Patient brings a pencil slowly to within 2–3 cm of the eye just above the nose about 15 minutes per day 5 times per week. Patients should record the closest distance that they could maintain fusion (keep the pencil from going double as long as possible) after each 5 minutes of therapy. Computer software may be used at home or in an orthoptists/vision therapists office to treat convergence insufficiency. A weekly 60-minute in-office therapy visit may be prescribed. This is generally accompanied with additional in home therapy.
In 2005, the Convergence Insufficiency Treatment Trial (CITT) published two randomized clinical studies. The first, published in Archives of Ophthalmology demonstrated that computer exercises when combined with office based vision therapy/orthoptics were more effective than "pencil pushups" or computer exercises alone for convergency insufficiency in 9- to 18-year-old children. The second found similar results for adults 19 to 30 years of age. In a bibliographic review of 2010, the CITT confirmed their view that office-based accommodative/vergence therapy is the most effective treatment of convergence insufficiency, and that substituting it in entirety or in part with other eye training approaches such as home-based therapy may offer advantages in cost but not in outcome. A later study of 2012 confirmed that orthoptic exercises led to longstanding improvements of the asthenopic symptoms of convergence sufficiency both in adults and in children. A 2011 Cochrane Review reaffirmed that office-based therapy is more effective than home-based therapy, though the evidence of effectiveness is a lot stronger for children than for the adult population.
Both positive fusional vergence (PFV) and negative fusional vergence (NFV) can be trained, and vergence training should normally include both.
Surgical correction options are also available, but the decision to proceed with surgery should be made with caution as convergence insufficiency generally does not improve with surgery. Bilateral medial rectus resection is the preferred type of surgery. However, the patient should be warned about the possibility of uncrossed diplopia at distance fixation after surgery. This typically resolves within 1–3 months postoperatively. The exophoria at near often recurs after several years, although most patients remain asymptomatic.
Although there has been extensive research in the past decades on this disease, there is still no evidence based therapies for this condition. This condition is often diagnosed at an early age; usually as a teenager or young adult.
To make a specific diagnosis, intraocular fluid samples may be taken and sent for analysis. In some cases, blood or cerebrospinal fluid (CSF) are also tested. Imaging may be done to help make the diagnosis.