Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
X-rays can confirm and distinguish possibilities of existing causes of pain that are unrelated to tennis elbow, such as fracture or arthritis. Rarely, calcification can be found where the extensor muscles attach to the lateral epicondyle. Medical ultrasonography and magnetic resonance imaging (MRI) are other valuable tools for diagnosis but are frequently avoided due to the high cost. MRI screening can confirm excess fluid and swelling in the affected region in the elbow, such as the connecting point between the forearm bone and the extensor carpi radialis brevis.
In most cases, a physician will diagnose an ulnar collateral ligament injury using a patient’s medical history and a physical examination that includes a valgus stress test. The valgus stress test is performed on both arms and a positive test is indicated by pain on the affected arm that is not present on the uninvolved side. Physicians often utilize imaging techniques such as ultrasound, x-rays and magnetic resonance imaging or arthroscopic surgery to aid with making a proper diagnosis.
Another factor of tennis elbow injury is experience and ability. The proportion of players who reported a history of tennis elbow had an increased number of playing years. As for ability, poor technique increases the chance for injury much like any sport. Therefore, an individual must learn proper technique for all aspects of their sport. The competitive level of the athlete also affects the incidence of tennis elbow. Class A and B players had a significantly higher rate of tennis elbow occurrence compared to class C and novice players. However, an opposite, but not statistically significant, trend is observed for the recurrence of previous cases, with an increasingly higher rate as ability level decreases.
Other ways to prevent tennis elbow:
- Decrease the amount of playing time if already injured or feeling pain in outside part of the elbow.
- Stay in overall good physical shape.
- Strengthen the muscles of the forearm: (pronator quadratus, pronator teres, and supinator muscle)—the upper arm: (biceps, triceps)—and the shoulder (deltoid muscle) and upper back (trapezius). Increased muscular strength increases stability of joints such as the elbow.
- Like other sports, use equipment appropriate to your ability, body size, and muscular strength.
- Avoid any repetitive lifting or pulling of heavy objects (especially over your head)
Vibration dampeners (otherwise known as "gummies") are not believed to be a reliable preventative measure. Rather, proper weight distribution in the racket is thought to be a more viable option in negating shock.
"Any finger injury that is sustained by a young adolescent (12–16) should be seen by a physician and have x-rays performed. These skeletally immature athletes are very susceptible to developing debilitating joint arthritis later in adulthood."
If severe pain persists after the first 24hours it is recommended that an individual consult with a professional who can make a diagnosis and implement a treatment plan so the patient can return to everyday activities (Flegel, 2004). These are some of the tools that a professional can use to help make a full diagnosis;
Nerve conduction studies may also be used to localize nerve dysfunction ("e.g.", carpal tunnel syndrome), assess severity, and help with prognosis.
Electrodiagnosis also helps differentiate between myopathy and neuropathy.
Ultimately, the best method of imaging soft tissue is magnetic resonance imaging (MRI), though it is cost-prohibitive and carries a high false positive rate.
RSIs are assessed using a number of objective clinical measures. These include effort-based tests such as grip and pinch strength, diagnostic tests such as Finkelstein's test for De Quervain's tendinitis, Phalen's Contortion, Tinel's Percussion for carpal tunnel syndrome, and nerve conduction velocity tests that show nerve compression in the wrist. Various imaging techniques can also be used to show nerve compression such as x-ray for the wrist, and MRI for the thoracic outlet and cervico-brachial areas.
To assess an olecranon fracture, a careful skin exam is performed to ensure there is no open fracture. Then a complete neurological exam of the upper limb should be documented. Frontal and lateral X-ray views of the elbow are typically done to investigate the possibility of an olecranon fracture. A true lateral x-ray is essential to determine the fracture pattern, degree of displacement, comminution, and the degree of articular involvement.
As the symptoms become prominent, the child will visit their pediatrician or family doctor to confirm whether or not the child has Panner Disease. When the child visits the doctor, the doctor will seek information about the child’s age, sports participation, activity level, and what the child’s dominant arm is. The affected elbow will be compared to the healthy elbow and any differences between the two will be noted. The location of where the pain is in the elbow, and the child’s range of motion and extension will also be determined to make an accurate diagnosis. To check the child’s range of motion and extension limitation the child will be asked to move the arm of the affected elbow in various directions. The movement of the arm in various directions will allow the doctor to conclude how good the child is able to move the arm and the doctor will be able to determine if there is pain caused by the various directions of movement.
To confirm the diagnosis, an x-ray or MRI scan will be done. The radiograph will enable the doctor to visualize irregularities and see the shape of the capitellum and also visualize the growth plate. In Panner Disease, the capitellum may appear flat and the bone growth plate will look irregular and fragmented. The areas where bone breakdown has occurred can also be visualized on the radiograph. When the patient undergoes a MRI scan any irregularities of the capitellum will able to be visualized, and the bone will be able to be visualized in more detail to determine the extent of swelling, if any. In the MRI results for Panner disease, there will be a decreased signal intensity of the capitellum on a T1 series and increased signal intensity on a T2 series.
Pain along the inside of the elbow is the main symptom of this condition. Throwing athletes report it occurs most often during the acceleration phase of throwing. Closing the hand and clenching the fist has also been shown to reproduce the painful symptoms. The injury is often associated with an experience of a sharp “pop” in the elbow, followed by pain during a single throw. In addition, swelling and bruising of the elbow, loss of elbow range of motion, and a sudden decrease in throwing velocity are all common symptoms of a UCL injury. If the injury is less severe, pain can be minimal with complete rest.
Climbers often develop calluses on their fingers from regular contact with the rock and the rope. When calluses split open they expose a raw layer of skin that can be very painful. This type of injury is commonly referred to as a flapper.
The use of magnesium carbonate (chalk) for better grip dries out the skin and can often lead to cracked and damaged hands
There are a number of skincare products available for climbers that help to treat calluses, moisturise dry hands and reduce recovery time.
Diagnosis is confirmed by x-ray imaging. Displaced fractures are readily apparent. A non-displaced fracture can be difficult to identify and a fracture line may not be visible on the X-rays. However, the presence of a joint effusion is highly suggestive of a non-displaced fracture. Bleeding from the fracture expands the joint capsule and is visualized on the lateral view as a darker area anteriorly and posteriorly, and is known as the sail sign. Depending on the child's age, parts of the bone will still be developing and if not yet calcified, will not show up on the X-rays. At times, X-rays of the opposite elbow may be obtained for comparison. There are landmarks on the X-rays that can be used to assess displacement, including the "anterior humeral line", which is a line drawn down along the front of the humerus on the lateral view and it should pass through the middle third of the capitulum of the humerus.
Being an extremely rare disease, it is unknown as to what exactly causes Panner Disease. It is believed that the disease may be brought on by continuous overuse of the elbow and that puts pressure on the elbow and also strains the elbow in children during the period of rapid bone growth. The overuse of the elbow can be due to the involvement in sports such as baseball, handball, and gymnastics where these sports involve throwing or putting a lot of pressure on the joints. These repeated activities cause microtraumas and results in the affected elbow being swollen, irritated, and in pain. Panner Disease results when the blood supply to the capitellum is disrupted and therefore the cells within the growth plate of the capitellum die and it becomes flat due to the softening and collapsing of the surrounding bone. To prevent future instances of Panner Disease the child is instructed to cease all physical and sports activities that involve the use of the affected elbow until the symptoms are relieved.
CMC OA is diagnosed based on clinical findings and radiologic imaging.
Ultrasound imaging can be used to evaluate tissue strain, as well as other mechanical properties.
Ultrasound-based techniques are becoming more popular because of its affordability, safety, and speed. Ultrasound can be used for imaging tissues, and the sound waves can also provide information about the mechanical state of the tissue.
Increased water content and disorganized collagen matrix in tendon lesions may be detected by ultrasonography or magnetic resonance imaging.
This method should be used within the first 48–72 hours after the injury in order to speed up the recovery process.
Heat: Applying heat to the injured area can cause blood flow and swelling to increase.
Alcohol: Alcohol can inhibit your ability to feel if your injury is becoming more aggravated, as well as increase blood flow and swelling.
Re-injury: Avoid any activities that could aggravate the injury and cause further damage.
Massage: Massaging an injured area can promote blood flow and swelling, and ultimately do more damage if done too early.
Non-specific treatments include:
- Non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen, naproxen or aspirin
- Heat or ice
- A counter-force brace or "elbow strap" to reduce strain at the elbow epicondyle, to limit pain provocation and to protect against further damage.
Before anesthetics and steroids are used, conservative treatment with an occupational therapist may be attempted. Before therapy can commence, treatment such as the common rest, ice, compression and elevation (R.I.C.E.) will typically be used. This will help to decrease the pain and inflammation; rest will alleviate discomfort because golfer's elbow is an overuse injury. The patient can use a tennis elbow splint for compression. A pad can be placed anteromedially on the proximal forearm. The splint is made in 30–45 degrees of elbow flexion. A daytime elbow pad also may be useful, by limiting additional trauma to the nerve.
Therapy will include a variety of exercises for muscle/tendon reconditioning, starting with stretching and gradual strengthening of the flexor-pronator muscles. Strengthening will slowly begin with isometrics and progresses to eccentric exercises helping to extend the range of motion back to where it once was. After the strengthening exercises, it is common for the patient to ice the area.
Simple analgesic medication has a place, as does more specific treatment with oral anti-inflammatory medications (NSAIDs). These will help control pain and any inflammation. A more invasive treatment is the injection into and around the inflamed and tender area of a long-acting glucocorticoid (steroid) agent. After causing an initial exacerbation of symptoms lasting 24 to 48 hours, this may produce an improvement of the condition in some five to seven days.
The ulnar nerve runs in the groove between the medial humeral epicondyle and the olecranon process of the ulna. It is most important that this nerve should not be damaged accidentally in the process of injecting a golfer's elbow.
If all else fails, epicondylar debridement (a surgery) may be effective. The ulnar nerve may also be decompressed surgically.
If the appropriate remediation steps are taken - rest, ice, and rehabilitative exercise and stretching - recovery may follow. Few patients will need to progress to steroid injection, and less than 10% will require surgical intervention.
"Baumann's angle", also known as the humeral-capitellar angle, is measured on an AP radiograph of the elbow between the long axis of the humerus and the growth plate of the lateral condyle.
Reported normal values for Baumann's angle range between 9 and 26° An angle of more than 10° is generally regarded as acceptable. When reducing paediatric supracondylar humerus fractures, a deviation of more than 5° from the contralateral side should not be accepted.
Alteration of Baumann angle: Baumann's angle is created by drawing a line parallel to the longitudinal axis of the humeral shaft and a line along the lateral condylar physis as viewed on the AP image normal is 70-75 degrees, but best judge is a comparison of the contralateral side deviation of more than 5 degrees indicates coronal plane deformity and should not be accepted.
As of July 2000, hypermobility was diagnosed using the Brighton criteria. The Brighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:
Olecranon fractures are rare in children, constituting only 5 to 7% of all elbow fractures. This is because in early life, olecranon is thick, short and much stronger than the lower extremity of the humerus.
However, olecranon fractures are a common injury in adults. This is partly due to its exposed position on the point of the elbow.
Definitive diagnosis of humerus fractures is typically made through radiographic imaging. For proximal fractures, X-rays can be taken from a scapular anteroposterior (AP) view, which takes an image of the front of the shoulder region from an angle, a scapular Y view, which takes an image of the back of the shoulder region from an angle, and an axillar lateral view, which has the patient lie on his or her back, lift the bottom half of the arm up to the side, and have an image taken of the axilla region underneath the shoulder. Fractures of the humerus shaft are usually correctly identified with radiographic images taken from the AP and lateral viewpoints. Damage to the radial nerve from a shaft fracture can be identified by an inability to bend the hand backwards or by decreased sensation in the back of the hand. Images of the distal region are often of poor quality due to the patient being unable to extend the elbow because of pain. If a severe distal fracture is supected, then a computed tomography (CT) scan can provide greater detail of the fracture. Nondisplaced distal fractures may not be directly visible; they may only be visible due to fat being displaced because of internal bleeding in the elbow.
It is important that hypermobile individuals remain fit - even more so than the average individual - to prevent recurrent injuries. Regular exercise and exercise that is supervised by a physician and physical therapist can reduce symptoms because strong muscles increase dynamic joint stability. Low-impact exercise such as closed chain kinetic exercises are usually recommended as they are less likely to cause injury when compared to high-impact exercise or contact sports.
Heat and cold treatment can help temporarily to relieve the pain of aching joints and muscles but does not address the underlying problems.
The most-often prescribed treatments for early-stage RSIs include analgesics, myofeedback, biofeedback, physical therapy, relaxation, and ultrasound therapy. Low-grade RSIs can sometimes resolve themselves if treatments begin shortly after the onset of symptoms. However, some RSIs may require more aggressive intervention including surgery and can persist for years.
General exercise has been shown to decrease the risk of developing RSI. Doctors sometimes recommend that RSI sufferers engage in specific strengthening exercises, for example to improve sitting posture, reduce excessive kyphosis, and potentially thoracic outlet syndrome. Modifications of posture and arm use (human factors and ergonomics) are often recommended.
In most cases, patients are discharged from an emergency department with pain medicine and a cast or sling. These fractures are typically minor and heal naturally over the course of a few weeks. Fractures of the proximal region, especially among elderly patients, may limit future shoulder activity. Severe fractures are usually resolved with surgical intervention, followed by a period of healing using a cast or sling. Severe fractures often cause long-term loss of physical ability. Complications in the recovery process of severe fractures include osteonecrosis, malunion or nonunion of the fracture, stiffness, and rotator cuff dysfunction, which require additional intervention in order for the patient to fully recover.
In the original description by Hume, where the olecranon fractures were not displaced, treatment consisted of closed reduction of the radial head dislocation under general anaesthesia by supination of the forearm. This was followed by immobilisation of the arm in a plaster cast with the elbow flexed at 90° and the forearm in supination for 6 weeks.
Where the olecranon fracture is displaced, open reduction internal fixation is recommended. Once the olecranon has been repaired, closed reduction of the radial head dislocation is usually possible. This is followed by immobilisation with the elbow flexed to 90° and the forearm in the neutral position. The duration of immobilisation depends on clinical assessment of the joint, and mobilisation may be possible after as little as 4 weeks.
Although the precise mechanism of injury is unclear, the injury occurs in children who have fallen heavily with their arm trapped under the body. In his original description of the injury, Hume suggested that the injury occurred as a result of hyperextension of the elbow leading to fracture of the olecranon, with pronation of the forearm leading to the radial head dislocation.