Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In order to treat acute limb ischaemia there are a series of things that can be done to determine where the occlusion is located, the severity, and what the cause was. To find out where the occlusion is located one of the things that can be done is simply a pulse examination to see where the heart rate can be detected and where it stops being sensed. Also there is a lower body temperature below the occlusion as well as paleness. A Doppler evaluation is used to show the extent and severity of the ischaemia by showing flow in smaller arteries. Other diagnostical tools are duplex ultrasonography, computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The CTA and MRA are used most often because the duplex ultrasonography although non-invasive is not precise in planning revascularization. CTA uses radiation and may not pick up on vessels for revascularization that are distal to the occlusion, but it is much quicker than MRA. In treating acute limb ischaemia time is everything.
In the worst cases acute limb ischaemia progresses to critical limb ischaemia, and results in death or limb loss. Early detection and steps towards fixing the problem with limb-sparing techniques can salvage the limb. Compartment syndrome can occur because of acute limb ischaemia because of the biotoxins that accumulate distal to the occlusion resulting in edema.
Upon suspicion of PAD, the first-line study is the ankle–brachial index (ABI). When the blood pressure readings in the ankles is lower than that in the arms, blockages in the arteries which provide blood from the heart to the ankle are suspected. Normal ABI range of 1.00 to 1.40.The patient is diagnosed with PAD when the ABI is ≤ 0.90 . ABI values of 0.91 to 0.99 are considered "borderline" and values >1.40 indicate noncompressible arteries. PAD is graded as mild to moderate if the ABI is between 0.41 and 0.90, and an ABI less than 0.40 is suggestive of severe PAD. These relative categories have prognostic value.
In people with suspected PAD but normal resting ABIs, exercise testing of ABI can be done. A base line ABI is obtained prior to exercise. The patient is then asked to exercise (usually patients are made to walk on a treadmill at a constant speed) until claudication pain occurs (or a maximum of 5 minutes), following which the ankle pressure is again measured. A decrease in ABI of 15%-20% would be diagnostic of PAD.
It is possible for conditions which stiffen the vessel walls (such as calcifications that occur in the setting of long term diabetes) to produce false negatives usually, but not always, indicated by abnormally high ABIs (> 1.40). Such results and suspicions merit further investigation and higher level studies.
If ABIs are abnormal the next step is generally a lower limb doppler ultrasound examination to look at site and extent of atherosclerosis. Other imaging can be performed by angiography, where a catheter is inserted into the common femoral artery and selectively guided to the artery in question. While injecting a radiodense contrast agent an X-ray is taken. Any flow limiting stenoses found in the x-ray can be identified and treated by atherectomy, angioplasty or stenting. Contrast angiography is the most readily available and widely used imaging technique.
Modern multislice computerized tomography (CT) scanners provide direct imaging of the arterial system as an alternative to angiography.
Magnetic resonance angiography (MRA) is a noninvasive diagnostic procedure that uses a combination of a large magnet, radio frequencies, and a computer to produce detailed images to provide pictures of blood vessels inside the body. The advantages of MRA include its safety and ability to provide high-resolution three-dimensional (3D) imaging of the entire abdomen, pelvis and lower extremities in one sitting.
It is not clear if screening for disease is useful as it has not been properly studied.
Early treatment is essential to keep the affected limb viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.
If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intraarterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.
Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.
Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.
Nutrition, specifically the Mediterranean-style diet, has the potential for decreasing the risk of having a stroke by more than half. It does not appear that lowering levels of homocysteine with folic acid affects the risk of stroke.
In addition to evaluating the symptoms described above, angiography can distinguish between cases caused by arteriosclerosis obliterans (displaying abnormalities in other vessels and collateral circulations) from those caused by emboli.
Magnetic resonance imaging (MRI) is the preferred test for diagnosing "skeletal muscle infarction".
When a stroke has been diagnosed, various other studies may be performed to determine the underlying cause. With the current treatment and diagnosis options available, it is of particular importance to determine whether there is a peripheral source of emboli. Test selection may vary since the cause of stroke varies with age, comorbidity and the clinical presentation. The following are commonly used techniques:
- an ultrasound/doppler study of the carotid arteries (to detect carotid stenosis) or dissection of the precerebral arteries;
- an electrocardiogram (ECG) and echocardiogram (to identify arrhythmias and resultant clots in the heart which may spread to the brain vessels through the bloodstream);
- a Holter monitor study to identify intermittent abnormal heart rhythms;
- an angiogram of the cerebral vasculature (if a bleed is thought to have originated from an aneurysm or arteriovenous malformation);
- blood tests to determine if blood cholesterol is high, if there is an abnormal tendency to bleed, and if some rarer processes such as homocystinuria might be involved.
For hemorrhagic strokes, a CT or MRI scan with intravascular contrast may be able to identify abnormalities in the brain arteries (such as aneurysms) or other sources of bleeding, and structural MRI if this shows no cause. If this too does not identify an underlying reason for the bleeding, invasive cerebral angiography could be performed but this requires access to the bloodstream with an intravascular catheter and can cause further strokes as well as complications at the insertion site and this investigation is therefore reserved for specific situations. If there are symptoms suggesting that the hemorrhage might have occurred as a result of venous thrombosis, CT or MRI venography can be used to examine the cerebral veins.
The fact that the ischemic cascade involves a number of steps has led doctors to suspect that neuroprotectants such as calcium channel blockers or glutamate antagonists could be produced to interrupt the cascade at a single one of the steps, blocking the downstream effects. Though initial trials for such neuroprotective drugs led many to be hopeful, until recently, human clinical trials with neuroprotectants such as NMDA receptor antagonists were unsuccessful.
On October 7, 2003, a U.S. patent number 6630507 entitled "Cannabinoids as Antioxidants and Neuroprotectants" was awarded to the United States Department of Health and Human Services, based on research carried out at the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). This patent claims that cannabinoids are "useful in the treatment and prophylaxis of wide variety of oxidation associated diseases such as ischemia, inflammatory ... and autoimmune diseases. The cannabinoids are found to have particular application as neuroprotectants, for example in limiting neurological damage following ischemic insults, such as stroke and trauma..."
On November 17, 2011, in accordance with 35 U.S.C. 209(c)(1) and 37 CFR part 404.7(a)(1)(i), the National Institutes of Health, Department of Health and Human Services, published in the Federal Register, that it is contemplating the grant of an exclusive patent license to practice the invention embodied in U.S. Patent 6,630,507, entitled “Cannabinoids as antioxidants and neuroprotectants” and PCT Application Serial No. PCT/US99/08769 and foreign equivalents thereof, entitled “Cannabinoids as antioxidants and neuroprotectants” [HHS Ref. No. E-287-1997/2] to KannaLife Sciences Inc., which has offices in New York, U.S. This patent and its foreign counterparts have been assigned to the Government of the United States of America. The prospective exclusive license territory may be worldwide, and the field of use may be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as antioxidants and neuroprotectants for use and delivery in humans, for the treatment of hepatic encephalopathy, as claimed in the Licensed Patent Rights.
A number of devices have been used to assess the sufficiency of oxygen delivery to the colon. The earliest devices were based on tonometry, and required time to equilibrate and estimate the pHi, roughly an estimate of local CO levels. The first device approved by the U.S. FDA (in 2004) used visible light spectroscopy to analyze capillary oxygen levels. Use during aortic aneurysm repair detected when colon oxygen levels fell below sustainable levels, allowing real-time repair. In several studies, specificity has been 83% for chronic mesenteric ischemia and 90% or higher for acute colonic ischemia, with a sensitivity of 71%-92%. This device must be placed using endoscopy, however.
The Infarct Combat Project (ICP) is an international nonprofit organization founded in 1998 to fight ischemic heart diseases through education and research.
Another type of thrombolysis disrupts the clot mechanically using either saline jets or, more recently, ultrasound waves. Saline jets dislodge the clot using the Bernoulli effect. Ultrasound waves, emitted at low frequency, create a physical fragmentation of the thrombus.
A coronary angiography is performed only after a stress test or ECG shows a sign of coronary ischemia or CAD. This test is very important in finding where the blockages are in the arteries.
This test helps determine if an angioplasty or bypass surgery is needed.
During this test the doctor makes a small incision in the patient's groin (femoral) or wrist (radial) and inserts a catheter. The catheter has a very small video camera on the end of it so that the doctor can find the arteries.
Once he has found the arteries, he injects a dye in them so that he/she can detect any blockages in the arteries. The dye is able to be seen on a special x-ray machine.
The test takes one to two hours.
A stress test, is just that, a test to put stress on the heart through exercise. A doctor will put a patient through a series of exercises to measure the tolerance for stress on the heart. This test uses an ECG to detect the electrical impulses of the heart during physical exertion.
During this test a patient is put on a treadmill or a stationary bike. The incline or resistance of the bike are steadily increased until the patient reaches the target heart rate for the patient's age and weight.
An exercise stress test is not always accurate in determining if one has a blockage in the arteries. Women and those who are young may show abnormalities on their test even though no signs of coronary ischemia or CAD are present.
Therapeutic hypothermia has been attempted to improve results post brain ischemia . This procedure was suggested to be beneficial based on its effects post cardiac arrest. Evidence supporting the use of therapeutic hypothermia after brain ischemia, however, is limited.
A closely related disease to brain ischemia is brain hypoxia. Brain hypoxia is the condition in which there is a decrease in the oxygen supply to the brain even in the presence of adequate blood flow. If hypoxia lasts for long periods of time, coma, seizures, and even brain death may occur. Symptoms of brain hypoxia are similar to ischemia and include inattentiveness, poor judgment, memory loss, and a decrease in motor coordination. Potential causes of brain hypoxia are suffocation, carbon monoxide poisoning, severe anemia, and use of drugs such as cocaine and other amphetamines. Other causes associated with brain hypoxia include drowning, strangling, choking, cardiac arrest, head trauma, and complications during general anesthesia. Treatment strategies for brain hypoxia vary depending on the original cause of injury, primary and/or secondary.
In addition to evaluating the symptoms above, the health care provider may find decreased or no blood pressure in the arm or leg.
Tests to determine any underlying cause for thrombosis or embolism and to confirm presence of the obstruction may include:
- Doppler ultrasound, especially duplex ultrasonography. It may also involve transcranial doppler exam of arteries to the brain
- Echocardiography, sometimes involving more specialized techniques such as Transesophageal echocardiography (TEE) or myocardial contrast echocardiography (MCE) to diagnose myocardial infarction
- Arteriography of the affected extremity or organ Digital subtraction angiography is useful in individuals where administration of radiopaque contrast material must be kept to a minimum.
- Magnetic resonance imaging (MRI)
- Blood tests for measuring elevated enzymes in the blood, including cardiac-specific troponin T and/or troponin I, myoglobins, and creatine kinase isoenzymes. These indicate embolisation to the heart that has caused myocardial infarction. Myoglobins and creatine kinase are also elevated in the blood in embolisation in other locations.
- Blood cultures may be done to identify the organism responsible for any causative infection
- Electrocardiography (ECG) for detecting myocardial infarction
- Angioscopy using a flexible fiberoptic catheter inserted directly into an artery.
As the cause of the ischemia can be due to embolic or thrombotic occlusion of the mesenteric vessels or nonocclusive ischemia, the best way to differentiate between the etiologies is through the use of mesenteric angiography. Though it has serious risks, angiography provides the possibility of direct infusion of vasodilators in the setting of nonocclusive ischemia.
When someone presents with an ischemic event, treatment of the underlying cause is critical for prevention of further episodes.
Anticoagulation with warfarin or heparin may be used if the patient has atrial fibrillation.
Operative procedures such as carotid endarterectomy and carotid stenting may be performed if the patient has a significant amount of plaque in the carotid arteries associated with the local ischemic events.
Oxygen consumption of skeletal muscle is approximately 50 times larger while contracting than in the resting state. Thus, resting the affected limb should delay onset of infarction substantially after arterial occlusion.
Low molecular weight heparin is used to reduce or at least prevent enlargement of a thrombus, and is also indicated before any surgery. In the legs, below the inguinal ligament, percutaneous aspiration thrombectomy is a rapid and effective way of removing thromboembolic occlusions. Balloon thrombectomy using a Fogarty catheter may also be used. In the arms, balloon thrombectomy is an effective treatment for thromboemboli as well. However, local thrombi from atherosclerotic plaque are harder to treat than embolized ones. If results are not satisfying, another angiography should be performed.
Thrombolysis using analogs of tissue plasminogen activator (tPA) may be used as an alternative or complement to surgery. Where there is extensive vascular damage, bypass surgery of the vessels may be necessary to establish other ways to supply the affected parts.
Swelling of the limb may cause inhibited flow by increased pressure, and in the legs (but very rarely in the arms), this may indicate a fasciotomy, opening up all four leg compartments.
Because of the high recurrence rates of thromboembolism, it is necessary to administer anticoagulant therapy as well. Aspirin and low molecular weight heparin should be administered, and possibly warfarin as well. Follow-up includes checking peripheral pulses and the arm-leg blood pressure gradient.
Prevention of atherosclerosis, which is a major risk factor of arterial embolism, can be performed e.g. by dieting, physical exercise and smoking cessation.
In case of high risk for developing thromboembolism, antithrombotic medication such as warfarin or coumadin may be taken prophylactically. Antiplatelet drugs may also be needed.
The U.S. Preventive Services Task Force (USPSTF) recommends against screening for carotid artery stenosis in those without symptoms.
Carotid stenosis is usually diagnosed by color flow duplex ultrasound scan of the carotid arteries in the neck. This involves no radiation, no needles and no contrast agents that may cause allergic reactions. This test has moderate sensitivity and specificity, and yields many false-positive results.
Typically duplex ultrasound scan is the only investigation required for decision making in carotid stenosis as it is widely available and rapidly performed. However, further imaging can be required if the stenosis is not near the bifurcation of the carotid artery.
One of several different imaging modalities, such as angiogram, computed tomography angiogram (CTA) or magnetic resonance imaging angiogram (MRA) may be useful. Each imaging modality has its advantages and disadvantages - Magnetic resonance angiography and CT angiography with contrast is contraindicated in patients with renal insufficiency, catheter angioigraphy has a 0.5% to 1.0% risk of stroke, MI, arterial injury or retoperitoneal bleeding. The investigation chosen will depend on the clinical question and the imaging expertise, experience and equipment available.
Unstable angina is characterized by at least one of the following:
1. Occurs at rest or minimal exertion and usually lasts more than 20 minutes (if nitroglycerin is not administered)
2. Being severe (at least Canadian Cardiovascular Society Classification 3) and of new onset (i.e. within 1 month)
3. Occurs with a crescendo pattern (brought on by less activity, more severe, more prolonged or increased frequency than previously).
Fifty percent of people with unstable angina will have evidence of necrosis of the heart's muscular cells based on elevated cardiac serum markers such as creatine kinase isoenzyme (CK)-MB and troponin T or I, and thus have a diagnosis of non-ST elevation myocardial infarction.
The differentiating presentations are suggestive of FMD being a unique syndrome in respect to the pediatric population. Experienced FMD clinicians warn against relying in the “string of beads” angiography for a diagnosis. In fact, it is suggested that FMD may be both under and over-diagnosed in children with stroke.
It is the lack of specific symptoms and its potential to appear anywhere that makes FMD a challenge to detect early on. The most accurate diagnosis comes from combining clinical presentation and angiographic imaging. According to the Michigan Outcomes Research and Reporting Program (MCORRP, 2013) the length of time from a patient’s first signs or symptoms to diagnosis is commonly 5 years.
FMD is currently diagnosed through the use of both invasive and non-invasive tests. Non-invasive testing includes duplex ultrasonography, magnetic resonance angiography (MRA), and computed tomographic angiography (CTA). Invasive testing through angiography is the gold standard. However, due to the higher risk of complications this is typically not done early on. Occasionally, FMD is diagnosed asymptomatically after an unrelated x-ray presents the classic ‘string of beads’ appearance of the arteries, or when a practitioner investigates an unexpected bruit found during an exam. When a diagnosis of FMD is considered for a patient thorough medical history, family history as well as vascular examination should be completed.
A definitive diagnosis of FMD can only be made with imaging studies. Catheter-based angiography (with contrast) has proven to be the most accurate imaging technique: this test involves a catheter is inserted into a large artery and advanced until it reaches the vessel of question. The catheter allows practitioners to view and measure the pressure of the artery aiding in the categorization and severity of the FMD diseased artery. According to Olin, “catheter-based angiography is the only imaging modality that can accurately identify the changes of FMD, aneurysm formation, and dissection in the branch vessels.” Practitioners believe it is important to utilize IVUS imaging because stenosis can sometimes only be detected through the methods of pressure gradient or IVUS imaging. In addition, computed tomography angiography and magnetic resonance angiography are commonly used to evaluate arteries in the brain. Doppler ultrasound may be used in both the diagnosis and follow-up of FMD.
Nitroglycerin can be used immediately to widen the coronary arteries and help increase blood flow to the heart. In addition, nitroglycerin causes peripheral venous and artery dilation reducing cardiac preload and afterload. These reductions allow for decreased stress on the heart and therefore lower the oxygen demand of the heart's muscle cells.
Antiplatelet drugs such as aspirin and clopidogrel can help reduce the progression of atherosclerotic plaque formation, as well as combining these with an anticoagulant such as a low molecular weight heparin.