Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Segond and reverse Segond fractures are characterized by a small avulsion, or "chip", fragment of characteristic size that is best seen on plain radiography in the anterior-posterior plane. The chip of bone may be very difficult to see on the plain x-ray exam, and may be better seen on computed tomography. MRI may be useful for visualization of the associated bone marrow edema of the underlying tibial plateau on fat- saturated T2W and STIR images, as well as the associated findings of ligamentous and/or meniscal injury.
Osteoarthritis between the radius bone and the carpals is indicated by a "radiocarpal joint space" of less than 2mm.
X-rays can be very helpful in diagnosing and differentiating between SNAC and SLAC wrists. On the other hand, X-rays are not always sufficient to distinguish between different stages. It is important to note that both hands need to be compared. Therefore, two X-rays are needed: one from the left and one from the right hand. When the X-ray is inconclusive, wrist arthroscopy can be performed.
SLAC
Because the scapholunate ligament is ruptured, the scaphoid and lunate are not longer connected. This results in a larger space between the two bones, also known as the Terry Thomas sign. A space larger than 3 mm is suspicious and a space larger than 5 mm is a proven SLAC pathology. Scaphoid instability due to the ligament rupture can be stactic or dynamic. When the X-ray is diagnostic and there is a convincing Terry Thomas sign it is a static scaphoid instability. When the scaphoid is made unstable by either the patient or by manipulation by the examining physician it is a dynamic instability.
In order to diagnose a SLAC wrist you need a posterior anterior (PA) view X-ray, a lateral view X-ray and a fist view X-ray. The fist X-ray is often made if there is no convincing Terry Thomas sign. A fist X-ray of a scapholunate ligament rupture will show a descending capitate. Making a fist will give pressure at the capitate, which will descend if there is a rupture in the scapholunate ligament.
SNAC
In order to diagnose a SNAC wrist you need a PA view X-ray and a lateral view X-ray. As in SLAC, the lateral view X-ray is performed to see if there is a DISI.
Computed tomography (CT) or Magnetic Resonance Imaging (MRI) are rarely used to diagnose SNAC or SLAC wrist osteoarthritis because there is no additional value. Also, these techniques are much more expensive than a standard X-ray. CT or MRI may be used if there is a strong suspicion for another underlying pathology or disease.
Impingement syndrome can usually be diagnosed by history and physical exam. On physical exam, the physician may twist or elevate the patient's arm to test for reproducible pain (Neer sign and Hawkins-Kennedy test). These tests help localize the pathology to the rotator cuff; however, they are not specific for impingement. Neer sign may also be seen with subacromial bursitis.
The physician may inject lidocaine (usually combined with a steroid) into the bursa, and if there is an improved range of motion and decrease in pain, this is considered a positive "Impingement Test". It not only supports the diagnosis for impingement syndrome, but it is also therapeutic.
Plain x-rays of the shoulder can be used to detect some joint pathology and variations in the bones, including acromioclavicular arthritis, variations in the acromion, and calcification. However, x-rays do not allow visualization of soft tissue and thus hold a low diagnostic value. Ultrasonography, arthrography and MRI can be used to detect rotator cuff muscle pathology. MRI is the best imaging test prior to arthroscopic surgery. Due to lack of understanding of the pathoaetiology, and lack of diagnostic accuracy in the assessment process by many physicians, several opinions are recommended before intervention.
Because of the high rate of associated ligamentous and meniscal injury, the presence of a Segond or reverse Segond fracture requires that these other pathologies must be specifically ruled out. Increasingly, reconstruction of the ACL is combined with reconstruction of the ALL when this associated pathology is present. It is often associated with an increased 'pivot shift' on physical exam.
Examination will often show tenderness at the radioscaphoid joint (when palpated or while moving the radioscaphoid joint), dorsal radial swelling and instability of the wrist joint. Notice that people may say they have trouble with rising from a chair when pressure is exerted on the hands by pushing against the handrail. Younger people may complain about not being able to do push-ups anymore because of a painful hand.
There are a number of tests and actions that can be performed when a patient is suspected of having osteoarthritis caused by SLAC or SNAC.
SLAC:
- Tenderness 1 cm above Lister’s Tubercle
Tests:
- Watson's test
- Finger extension test
SNAC:
- Tenderness at the anatomical snuff box
- Painful pronation and supination when performed against resistance
- Pain during axial pressure
Curb as a visible blemish is an easy diagnosis, as swelling in the distal lateral hock region is, by definition, curb. However, ultrasound is an essential tool in the diagnosis and in establishing a treatment plan. Diagnostic anesthesia (local or nerve blocks) can be helpful, but is not perfectly specific in this area.
Laximetry is a reliable technique for diagnosing a torn anterior cruciate ligament.
The calcific deposits are visible on X-ray as discrete lumps or cloudy areas. The deposits look cloudy on X-ray if they are in the process of reabsorption, and this is also when they cause the most pain. The deposits are crystalline when in their resting phase and like toothpaste in the reabsorptive phase. However, poor correlation exists between the appearance of a calcific deposit on plain X-rays and its consistency on needling. Ultrasound is also useful to depict calcific deposits and closely correlates with the stage of disease.
Magnetic resonance imaging (MRI) can be helpful in assessing for a ligamentous injury to the medial side of the knee. Milewski et al. has found that grade I to III classification can be seen on MRI. With a high-quality image (1.5 tesla or 3 tesla magnet) and no previous knowledge of the patient’s history, musculoskeletal radiologists were able to accurately diagnose medial knee injury 87% of the time. MRI can also show associated bone bruises on the lateral side of the knee, which one study shows, happen in almost half of medial knee injuries.
Knee MRIs should be avoided for knee pain without mechanical symptoms or effusion, and upon non-successful results from a functional rehabilitation program.
The MRI is perhaps the most used technique for diagnosing the state of the Anterior Cruciate Ligament but it not always the most reliable. In some cases the Anterior Cruciate Ligament can indeed not be seen because of the blood surrounding it.
Anterior-posterior (AP) radiographs are useful for reliably assessing normal anatomical landmarks. Bilateral valgus stress AP images can show a difference in medial joint space gapping. It has been reported that an isolated grade III sMCL tear will show an increase in medial compartment gapping of 1.7 mm at 0° of knee flexion and 3.2 mm at 20° of knee flexion, compared to the contralateral knee. Additionally, a complete medial ligamentous disruption (sMCL, dMCL, and POL) will show increased gapping by 6.5 mm at 0° and 9.8 mm at 20° during valgus stress testing. Pellegrini-Stieda syndrome can also be seen on AP radiographs. This finding is due to calcification of the sMCL (heterotopic ossification) caused by the chronic tear of the ligament.
Treatment generally consists of rest, followed by a controlled exercise program, based on clinical and ultrasound findings. Many other treatments related to tendon and ligament injuries have been tried. (See tendinitis)
DISH is diagnosed by findings on x-ray studies. Radiographs of the spine will show abnormal bone formation (ossification) along the anterior spinal ligament. The disc spaces, facet and sacroiliac joints remain unaffected. Diagnosis requires confluent ossification of at least four contiguous vertebral bodies. Classically, advanced disease may have "melted candle wax" appearance along the spine on radiographic studies. In some cases, DISH may be manifested as ossification of enthesis in other parts of the skeleton.
The calcification and ossification is most common on the right side of the spine. In people with dextrocardia and situs inversus this calcification occurs on the left side, which confirms the role of the descending thoracic aorta in preventing the physical manifestations of DISH on one side of the spine.
Knee MRIs should be avoided for knee pain without symptoms or effusion, unless there are non-successful results from a functional rehabilitation program.
In those with calcific tendinitis of the shoulder high energy extracorporeal shock-wave therapy (which uses sound waves) can be useful. It is not useful in other types of tendinitis. This procedure may be known as .
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
It is often seen as a repetitive stress injury, and thus lifestyle modification is typically the basic course of management strategies. For example, a person should begin doing foot and calf workouts. Strong muscles in the calves and lower legs will help take the stress off the bone and thus help cure or prevent heel spurs. Icing the area is an effective way to get immediate pain relief.
Isolated and combined posterolateral knee injuries are difficult to accurately diagnose in patients presenting with acute knee injuries. The incidence of isolated posterolateral corner injuries has been reported to be between 13% and 28%. Most PLC injuries accompany an ACL or PCL tear, and can contribute to ACL or PCL reconstruction graft failure if not recognized and treated. A study by LaPrade "et al." in 2007 showed the incidence of posterolateral knee injuries in patients presenting with acute knee injuries and hemarthrosis (blood in the knee joint) was 9.1%.
High quality MRI images (1.5 T magnet or higher ) of the knee can be extremely useful to diagnose injuries to the posterolateral corner and other major structures of the knee. While the standard coronal, sagittal and axial films are useful, thin slice (2 mm ) coronal oblique images should also be obtained when looking for PLC injuries. Coronal oblique images should include the fibular head and styloid to allow for evaluation of the FCL and popliteus tendon.
If severe pain persists after the first 24hours it is recommended that an individual consult with a professional who can make a diagnosis and implement a treatment plan so the patient can return to everyday activities (Flegel, 2004). These are some of the tools that a professional can use to help make a full diagnosis;
Nerve conduction studies may also be used to localize nerve dysfunction ("e.g.", carpal tunnel syndrome), assess severity, and help with prognosis.
Electrodiagnosis also helps differentiate between myopathy and neuropathy.
Ultimately, the best method of imaging soft tissue is magnetic resonance imaging (MRI), though it is cost-prohibitive and carries a high false positive rate.
About 25% of people over the age of 50 experience knee pain from degenerative knee diseases.
According to the posterior cruciate ligament injuries only account for 1.5 percent of all knee injuries (figure 2). If it is a single injury to the posterior cruciate ligament that requires surgery only accounted for 1.1 percent compared to all other cruciate surgeries but when there was multiple injuries to the knee the posterior cruciate ligament accounted for 1.2 percent of injuries.
Normally, asymptomatic cases are not treated. Non-steroidal anti inflammatory drugs and surgery are two typical options for the rest.
A grade III PCL injury with more than 10mm posterior translation when the posterior drawer examination is performed may be treated surgically. Patients that do not improve stability during physical therapy or develop an increase in pain will be recommended for surgery.
An effective rehabilitation program reduces the chances of reinjury and of other knee-related problems such as patellofemoral pain syndrome and osteoarthritis. Rehabilitation focuses on maintaining strength and range of motion to reduce pain and maintain the health of the muscles and tissues around the knee joint.