Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first changes seen in shock is an increased cardiac output followed by a decrease in mixed venous oxygen saturation (SmvO2) as measured in the pulmonary artery via a pulmonary artery catheter. Central venous oxygen saturation (ScvO2) as measured via a central line correlates well with SmvO2 and are easier to acquire. If shock progresses anaerobic metabolism will begin to occur with an increased blood lactic acid as the result. While many laboratory tests are typically performed there is no test that either makes or excludes the diagnosis. A chest X-ray or emergency department ultrasound may be useful to determine volume state.
The best evidence exists for the treatment of septic shock in adults and as the pathophysiology appears similar in children and other types of shock treatment this has been extrapolated to these areas. Management may include securing the airway via intubation if necessary to decrease the work of breathing and for guarding against respiratory arrest. Oxygen supplementation, intravenous fluids, passive leg raising (not Trendelenburg position) should be started and blood transfusions added if blood loss is severe. It is important to keep the person warm as well as adequately manage pain and anxiety as these can increase oxygen consumption.
According to current guidelines, requirements for diagnosis with sepsis are "the presence (probable or documented) of infection together with systemic manifestations of infection". These manifestations may include:
- Tachypnea (fast rate of breathing), which is defined as more than 20 breaths per minute, or when testing blood gas, a less than 32 mmHg, which signifies hyperventilation
- White blood cell count either significantly low ( 12000 cells/mm)
- Tachycardia (rapid heart rate), which in sepsis is defined as a rate greater than 90 beats per minute
- Altered body temperature: Fever > or hypothermia <
Documented evidence of infection, may include positive blood culture, signs of pneumonia on chest x-ray, or other radiologic or laboratory evidence of infection. Signs of end-organ dysfunction are present in septic shock, including kidney failure, liver dysfunction, changes in mental status, or elevated serum lactate.
Septic shock is diagnosed if there is low blood pressure (BP) that does not respond to treatment. This means that intravenous fluid administration alone is not enough to maintain a patient's BP. Diagnosis of septic shock is made when systolic blood pressure is less than 90mm Hg, a mean arterial pressure (MAP) is less than 70 mm Hg, or a systolic BP decreases 40 mm Hg or more without other causes for low BP.
The main goals of treatment in distributive shock are to reverse the underlying cause and achieve hemodynamic stabilization. Immediate treatment involves fluid resuscitation and the use of vasoactive drugs, both vasopressors and inotropes. Hydrocortisone is used for patients whose hypotension does not respond to fluid resuscitation and vasopressors. Opening and keeping open the microcirculation is a consideration in the treatment of distributive shock, as a result limiting the use of vasopressors has been suggested. Control of inflammation, vascular function and coagulation to correct pathological differences in blood flow and microvascular shunting has been pointed to as a potentially important adjunct goal in the treatment of distributive shock.
Patients with septic shock are treated with antimicrobial drugs to treat the causative infection. Some sources of infection require surgical intervention including necrotizing fasciitis, cholangitis, abscess, intestinal ischemia, or infected medical devices.
Anaphylactic shock is treated with epinephrine.
Because lowered blood pressure in septic shock contributes to poor perfusion, fluid resuscitation is an initial treatment to increase blood volume. Crystalloids such as normal saline and lactated Ringer's solution are recommended as the initial fluid of choice, while the use of colloid solutions such as hydroxyethyl starch have not shown any advantage or decrease in mortality. When large quantities of fluids are given, administering albumin has shown some benefit.
Septic shock is associated with significant mortality and is the leading non cardiac cause of death in intensive care units (ICUs).
Emergency oxygen should be immediately employed to increase the efficiency of the patient's remaining blood supply. This intervention can be life-saving.
The use of intravenous fluids (IVs) may help compensate for lost fluid volume, but IV fluids cannot carry oxygen in the way that blood can; however, blood substitutes are being developed which can. Infusion of colloid or crystalloid IV fluids will also dilute clotting factors within the blood, increasing the risk of bleeding. It is current best practice to allow permissive hypotension in patients suffering from hypovolemic shock, both to ensure clotting factors are not overly diluted and also to stop blood pressure being artificially raised to a point where it "blows off" clots that have formed.
Usually referred to as a "class" of shock.
Most sources state that there are 4 stages of hypovolemic shock; however, a number of other systems exist with as many as 6 stages.
The 4 stages are sometimes known as the "Tennis" staging of hypovolemic shock, as the stages of blood loss (under 15% of volume, 15–30% of volume, 30–40% of volume and above 40% of volume) mimic the scores in a game of tennis: 15, 15–30, 30–40 and 40. It is basically the same as used in classifying bleeding by blood loss.
The signs and symptoms of the major stages of hypovolemic shock include:
The diagnosis of hypotension is made by first obtaining a blood pressure, either non-invasively with a sphygmomanometer or invasively with an arterial catheter (mostly in an intensive care setting). If the MAP (Mean Arterial Pressure) is <65mmHg, this is generally considered hypotension.
For most adults, the healthiest blood pressure is at or below 120/80 mmHg. A small drop in blood pressure, even as little as 20 mmHg, can result in transient hypotension.
Evaluation of vasovagal syncope is done with a tilt table test.
For staphylococcal toxic shock syndrome, the diagnosis is based strictly upon CDC criteria defined in 2011, as follows:
1. Body temperature > 38.9 °C (102.02 °F)
2. Systolic blood pressure < 90 mmHg
3. Diffuse macular erythroderma
4. Desquamation (especially of the palms and soles) 1–2 weeks after onset
5. Involvement of three or more organ systems:
- Gastrointestinal (vomiting, diarrhea)
- Muscular: severe myalgia or creatine phosphokinase level at least twice the upper limit of normal for laboratory
- Mucous membrane hyperemia (vaginal, oral, conjunctival)
- Kidney failure (serum creatinine > 2 times normal)
- Liver inflammation (bilirubin, AST, or ALT > 2 times normal)
- Low platelet count (platelet count < 100,000 / mm)
- Central nervous system involvement (confusion without any focal neurological findings)
6. Negative results of:
- Blood, throat, and CSF cultures for other bacteria (besides "S. aureus")
- Negative serology for "Rickettsia" infection, leptospirosis, and measles
Cases are classified as confirmed or probable based on:
- Confirmed: All six of the criteria above are met (unless the patient dies before desquamation can occur)
- Probable: Five of the six criteria above are met
The treatment for hypotension depends on its cause. Chronic hypotension rarely exists as more than a symptom. Asymptomatic hypotension in healthy people usually does not require treatment. Adding electrolytes to a diet can relieve symptoms of mild hypotension. A morning dose of caffeine can also be effective. In mild cases, where the patient is still responsive, laying the person in dorsal decubitus (lying on the back) position and lifting the legs increases venous return, thus making more blood available to critical organs in the chest and head. The Trendelenburg position, though used historically, is no longer recommended.
Hypotensive shock treatment always follows the first four following steps. Outcomes, in terms of mortality, are directly linked to the speed that hypotension is corrected. Still-debated methods are in parentheses, as are benchmarks for evaluating progress in correcting hypotension. A study on septic shock provided the delineation of these general principles. However, since it focuses on hypotension due to infection, it is not applicable to all forms of severe hypotension.
1. Volume resuscitation (usually with crystalloid)
2. Blood pressure support with a vasopressor (all seem equivalent with respect to risk of death, with norepinephrine possibly better than dopamine). Trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
3. Ensure adequate tissue perfusion (maintain SvO2 >70 with use of blood or dobutamine)
4. Address the underlying problem (i.e., antibiotic for infection, stent or CABG (coronary artery bypass graft surgery) for infarction, steroids for adrenal insufficiency, etc...)
The best way to determine if a person will benefit from fluids is by doing a passive leg raise followed by measuring the output from the heart.
Neurogenic shock is a distributive type of shock resulting in low blood pressure, occasionally with a slowed heart rate, that is attributed to the disruption of the autonomic pathways within the spinal cord. It can occur after damage to the central nervous system such as spinal cord injury. Low blood pressure occurs due to decreased systemic vascular resistance resulting in pooling of blood within the extremities lacking sympathetic tone. The slowed heart rate results from unopposed vagal activity and has been found to be exacerbated by hypoxia and endobronchial suction.
Neurogenic shock can be a potentially devastating complication, leading to organ dysfunction and death if not promptly recognized and treated. It is not to be confused with spinal shock, which is not circulatory in nature.
Surgical shock is the shock to the circulation resulting from surgery. It is commonly due to a loss of blood which results in insufficient blood volume.
When cardiomyopathy is suspected as the cause of cardiogenic shock, a biopsy of heart muscle may be needed to make a definite diagnosis.
The Swan-Ganz catheter or pulmonary artery catheter may assist in the diagnosis by providing information on the hemodynamics.
A circulatory collapse is defined as a general or specific failure of the circulation, either cardiac or peripheral in nature.
Although the mechanisms, causes and clinical syndromes are different the pathogenesis is the same, the circulatory system fails to maintain the supply of oxygen and other nutrients to the tissues and to remove the carbon dioxide and other metabolites from them. The failure may be hypovolemic, distributive.
A common cause of this could be shock or trauma from injury or surgery.
The severity of this disease frequently warrants hospitalization. Admission to the intensive care unit is often necessary for supportive care (for aggressive fluid management, ventilation, renal replacement therapy and inotropic support), particularly in the case of multiple organ failure. The source of infection should be removed or drained if possible: abscesses and collections should be drained. Anyone wearing a tampon at the onset of symptoms should remove it immediately. Outcomes are poorer in patients who do not have the source of infection removed.
Antibiotic treatment should cover both "S. pyogenes" and "S. aureus". This may include a combination of cephalosporins, penicillins or vancomycin. The addition of clindamycin or gentamicin reduces toxin production and mortality.
Electric shock is also used as a medical therapy, under carefully controlled conditions:
- Electroconvulsive therapy or ECT is a psychiatric therapy for mental illness. The objective of the therapy is to induce a seizure for therapeutic effect. There is no conscious sensation of the electric shock because of the anesthesia used beforehand. Convulsive therapy was introduced in 1934 by Hungarian neuropsychiatrist Ladislas J. Meduna who, believing mistakenly that schizophrenia and epilepsy were antagonistic disorders, induced seizures first with camphor and then metrazol (cardiazol). The first patient was treated by Lucio Bini and Ugo Cerlettiin. ECT is generally administered three times a week for about 8-12 treatments.
- As a surgical tool for cutting or coagulation. An "Electrosurgical Unit" (or ESU) uses high currents (e.g. 10 amperes) at high frequency (e.g. 500 kHz) with various schemes of amplitude modulation to achieve the desired result - cut or coagulate - or both. These devices are safe when used correctly.
- As a treatment for fibrillation or irregular heart rhythms: see defibrillator and cardioversion.
- As a method of pain relief: see Transcutaneous Electrical Nerve Stimulator (more commonly referred to as a TENS unit).
- As an aversive punishment for conditioning of developmentally delayed individuals with severe behavioral problems. This controversial skin-shock method is employed only at the Judge Rotenberg Educational Center, a special needs school in Massachusetts.
- As a treatment for Hyperhidrosis with the device called iontophoresis
- As part of electrodiagnosis diagnostic tests including nerve conduction studies and electromyography.
- For genetic engineering and gene delivery using a non-viral vector system electroporation
SCLS is often difficult to recognize and diagnose on initial presentation, and thus misdiagnoses are frequent. The characteristic triad of profound arterial hypotension, hemoconcentration (elevated hematocrit, leukocytosis, and thrombocytosis), and hypoalbuminemia in the absence of secondary causes of shock and infection, requires diagnosis in a monitored, hospital setting during or after an acute episode. The fact that the condition is exceedingly rare – an estimated one per million inhabitants – and that several other diseases exhibit features akin to SCLS, including secondary capillary-leak syndrome or hypoproteinemia, militate against early identification. Preserved consciousness, despite severe shock and hypotension, is an additional and most intriguing clinical manifestation often reported during episodes at hospital admission.
Neurogenic shock can result from severe central nervous system damage (brain injury, cervical or high thoracic spinal cord). In more simple terms: the trauma causes a sudden loss of background sympathetic stimulation to the blood vessels. This causes them to relax (vasodilation) resulting in a sudden decrease in blood pressure (secondary to a decrease in peripheral vascular resistance).
Neurogenic shock results from damage to the spinal cord above the level of the 6th thoracic vertebra. It is found in about half of people who suffer spinal cord injury within the first 24 hours, and usually doesn't go away for one to three weeks.
The natural history of SCLS episodes indicates they resolve spontaneously within 2-to-4 days, and that they consist of two distinct phases:
A "general failure" is one that occurs across a wide range of locations in the body, such as systemic shock after the loss of a large amount of blood collapsing all the circulatory systems in the legs. A "specific failure" can be traced to a particular point, such as a clot.
Cardiac circulatory collapse affects the vessels of the heart such as the aorta and is almost always fatal. It is sometimes referred to as "acute" circulatory failure.
Peripheral circulatory collapse involves outlying arteries and veins in the body and can result in gangrene, organ failure or other serious complications. This form is sometimes called "peripheral vascular failure", "shock" or "peripheral vascular shutdown".
A milder or preliminary form of circulatory collapse is circulatory insufficiency.
The lethality of an electric shock is dependent on several variables:
- Current. The higher the current, the more likely it is lethal. Since current is proportional to voltage when resistance is fixed (ohm's law), high voltage is an indirect risk for producing higher currents.
- Duration. The longer the duration, the more likely it is lethal—safety switches may limit time of current flow
- Pathway. If current flows through the heart muscle, it is more likely to be lethal.
- High voltage (over about 600 volts). In addition to greater current flow, high voltage may cause dielectric breakdown at the skin, thus lowering skin resistance and allowing further increased current flow.
- medical implants. Artificial cardiac pacemakers or implantable cardioverter-defibrillators (ICD) are sensitive to very small currents.
- pre-existing medical condition.
- Age and Sex.
Other issues affecting lethality are frequency, which is an issue in causing cardiac arrest or muscular spasms. Very high frequency electric current causes tissue burning, but does not penetrate the body far enough to cause cardiac arrest (see electrosurgery). Also important is the pathway: if the current passes through the chest or head, there is an increased chance of death. From a main circuit or power distribution panel the damage is more likely to be internal, leading to cardiac arrest. Another factor is that cardiac tissue has a chronaxie (response time) of about 3 milliseconds, so electricity at frequencies of higher than about 333 Hz requires more current to cause fibrillation than is required at lower frequencies.
The comparison between the dangers of alternating current at typical power transmission frequences (i.e., 50 or 60 Hz), and direct current has been a subject of debate ever since the War of Currents in the 1880s. Animal experiments conducted during this time suggested that alternating current was about twice as dangerous as direct current per unit of current flow (or per unit of applied voltage).
It is sometimes suggested that human lethality is most common with alternating current at 100–250 volts; however, death has occurred below this range, with supplies as low as 42 volts. Assuming a steady current flow (as opposed to a shock from a capacitor or from static electricity), shocks above 2,700 volts are often fatal, with those above 11,000 volts being usually fatal, though exceptional cases have been noted. According to a Guinness Book of World Records comic, seventeen-year-old Brian Latasa survived a 230,000 volt shock on the tower of an ultra-high voltage line in Griffith Park, Los Angeles on November 9, 1967. A news report of the event stated that he was "jolted through the air, and landed across the line", and though rescued by firemen, he suffered burns over 40% of his body and was completely paralyzed except for his eyelids.
Early diagnosis is necessary to properly manage sepsis, as initiation of rapid therapy is key to reducing deaths from severe sepsis.
Within the first three hours of suspected sepsis, diagnostic studies should include white blood cell counts, measuring serum lactate, and obtaining appropriate cultures before starting antibiotics, so long as this does not delay their use by more than 45 minutes. To identify the causative organism(s), at least two sets of blood cultures using bottles with media for aerobic and anaerobic organisms should be obtained, with at least one drawn through the skin and one drawn through each vascular access device (such as an IV catheter) in place more than 48 hours. Bacteria are present in the blood in only about 30% of cases. Another possible method of detection is by polymerase chain reaction. If other sources of infection are suspected, cultures of these sources, such as urine, cerebrospinal fluid, wounds, or respiratory secretions, also should be obtained, as long as this does not delay the use of antibiotics.
Within six hours, if blood pressure remains low despite initial fluid resuscitation of 30 ml/kg, or if initial lactate is ≥ 4 mmol/l (36 mg/dl), central venous pressure and central venous oxygen saturation should be measured. Lactate should be re-measured if the initial lactate was elevated. Within twelve hours, it is essential to diagnose or exclude any source of infection that would require emergent source control, such as necrotizing soft tissue infection, infection causing inflammation of the abdominal cavity lining, infection of the bile duct, or intestinal infarction. A pierced internal organ (free air on abdominal x-ray or CT scan), an abnormal chest x-ray consistent with pneumonia (with focal opacification), or petechiae, purpura, or purpura fulminans may be evident of infection.
A 2013 review concluded moderate-quality evidence exists to support use of the procalcitonin level as a method to distinguish sepsis from non-infectious causes of SIRS. The same review found the sensitivity of the test to be 77% and the specificity to be 79%. The authors suggested that procalcitonin may serve as a helpful diagnostic marker for sepsis, but cautioned that its level alone cannot definitively make the diagnosis. A 2012 systematic review found that soluble urokinase-type plasminogen activator receptor (SuPAR) is a nonspecific marker of inflammation and does not accurately diagnose sepsis. This same review concluded, however, that SuPAR has prognostic value, as higher SuPAR levels are associated with an increased rate of death in those with sepsis.