Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The degeneration of white matter, which shows the degeneration of myelin, can be seen in a basic MRI and used to diagnose leukodystrophies of all types. T-1 and T-2 weighted FLAIR images are the most useful. FLAIR stands for fluid-attenuated inversion recovery. Electrophysiological and other kinds of laboratory testing can also be done. In particular, nerve conduction velocity is looked at to distinguish between leukodystrophy and other demyelinating diseases, as well as to distinguish between individual leukodystrophies. For example, individuals with X-ALD have normal conduction velocities, while those with Krabbe disease or metachromatic leukodystrophy have abnormalities in their conduction velocities. Next generation multigene sequencing panels for undifferentiated leukodystrophy can now be offered for rapid molecular diagnosis after appropriate genetic counselling.
Clinical examination and MRI are often the first steps in a MLD diagnosis. MRI can be indicative of MLD, but is not adequate as a confirming test.
An ARSA-A enzyme level blood test with a confirming urinary sulfatide test is the best biochemical test for MLD. The confirming urinary sulfatide is important to distinguish between MLD and pseudo-MLD blood results.
Genomic sequencing may also confirm MLD, however, there are likely more mutations than the over 200 already known to cause MLD that are not yet ascribed to MLD that cause MLD so in those cases a biochemical test is still warranted.
"For further information, see the MLD Testing page at MLD Foundation."
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
It is possible to detect the signs of Alexander disease with magnetic resonance imaging (MRI), which looks for specific changes in the brain that may be tell-tale signs for the disease. It is even possible to detect adult-onset Alexander disease with MRI. Alexander disease may also be revealed by genetic testing for the known cause of Alexander disease. A rough diagnosis may also be made through revealing of clinical symptoms including, enlarged head size, along with radiological studies, and negative tests for other leukodystrophies.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
The disease may be diagnosed by its characteristic grouping of certain cells (multinucleated globoid cells), nerve demyelination and degeneration, and destruction of brain cells. Special stains for myelin (e.g.; luxol fast blue) may be used to aid diagnosis.
Standard MRI scans have been performed on 1.5 Tesla scanners with 5 mm thickness and 5 mm spacing to screen for white matter lesions in identified families. If signal intensities of the MRI scans are higher in white matter regions than in grey matter regions, the patient is considered to be at risk for HDLS, although a number of other disorders can also produce white matter changes and the findings are not diagnostic without genetic testing or pathologic confirmation.
The prognosis is generally poor. With early onset, death usually occurs within 10 years from the onset of symptoms. Individuals with the infantile form usually die before the age of 7. Usually, the later the disease occurs, the slower its course is.
Diagnosis of the lipid storage disorders can be achieved through the use of several tests. These tests include clinical examination, biopsy, genetic testing, molecular analysis of cells or tissues, and enzyme assays. Certain forms of this disease can also be diagnosed through urine testing which will detect the stored material. Prenatal testing is also available to determine if the fetus will have the disease or is a carrier.
There is currently no therapy or cure for MLD in late infantile patients displaying symptoms, or for juvenile and adult onset with advanced symptoms. These patients typically receive clinical treatment focused on pain and symptom management.
Pre-symptomatic late infantile MLD patients, as well as those with juvenile or adult MLD that are either presymptomatic or displaying mild symptoms, can consider bone marrow transplantation (including stem cell transplantation), which may slow down progression of the disease in the central nervous system. However, results in the peripheral nervous system have been less dramatic, and the long-term results of these therapies have been mixed. Recent success has involved stem cells being taken from the bone marrow of children with the disorder and infecting the cells with a retro-virus, replacing the stem cells' mutated gene with the repaired gene before re-injecting it back into the patient where they multiplied. The children by the age of five were all in good condition and going to kindergarten when normally by this age, children with the disease can not even speak.
Several therapy options are currently being investigated using clinical trials primarily in late infantile patients. These therapies include gene therapy, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and potentially enzyme enhancement therapy (EET).
A team of international researchers and foundations gathered in 2008 to form an international MLD Registry to create and manage a shared repository of knowledge, including the natural history of MLD. This consortium consisted of scientific, academic and industry resources. This registry never became operational.
The MRI of patients with VWM shows a well defined leukodystrophy. These MRIs display reversal of signal intensity of the white matter in the brain. Recovery sequences and holes in the white matter are also visible. Over time, the MRI is excellent at showing rarefaction and cystic degeneration of the white matter as it is replaced by fluid. To show this change, displaying white matter as a high signal (T2-weighted), proton density, and Fluid attenuated inversion recovery (FLAIR) images are the best approach. T2-weighted images also displaying cerebrospinal fluid and rarefied/cystic white matter. To view the remaining tissue, and get perspective on the damage done (also helpful in determining the rate of deterioration) (T1-weighted), proton density, and FLAIR images are ideal as they show radiating stripe patterns in the degenerating white matter. A failure of MRI images is their ineffectiveness and difficulty in interpretation in infants since the brain has not fully developed yet. Though some patterns and signs may be visible, it is still difficult to conclusively diagnose. This often leads to misdiagnosis in infants particularly if the MRI results in equivocal patterns or because of the high water content in infants' brains. The easiest way to fix this problem is a follow-up MRI in the following weeks. A potentially similar appearance of MRI with white matter abnormalities and cystic changes may be seen in some patients with hypomelanosis of Ito, some forms of Lowe's (oculocerebrorenal) disease, or some of the mucopolysaccharidoses.
In addition to genetic tests involving "PEX" genes, biochemical tests have proven highly effective for the diagnosis of infantile Refsum disease and other peroxisomal disorders. Typically, IRD patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
In infantile Krabbe disease, death usually occurs in early childhood. A 2011 study found 1, 2, 3 year survival rates of 60%, 26%, and 14%, respectively. A few survived for longer and one was still alive at age 13. Patients with late-onset Krabbe disease tend to have a slower progression of the disease and live significantly longer.
The individual was examined at age 32, but he stated that he started noting differences 5 years before. He noticed sexual impotency, social isolation, unexplained aggression and sadness, loss of motivation, inert laughs, auditory hallucinations, thought insertion, delusions, and imperative commenting. He showed very minimal physical impairments, commonly seen in child-onsets. However, his MRI showed characteristic signs of VWM disease.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
There are no specific treatments for lipid storage disorders; however, there are some highly effective enzyme replacement therapies for people with type 1 Gaucher disease and some patients with type 3 Gaucher disease. There are other treatments such as the prescription of certain drugs like phenytoin and carbamazepine to treat pain for patients with Fabry disease. Furthermore, gene thereapies and bone marrow transplantation may prove to be effective for certain lipid storage disorders. Diet restrictions do not help prevent the buildup of lipids in the tissues.
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
Currently, there is no cure for laminopathies and treatment is largely symptomatic and supportive. Physical therapy and/or corrective orthopedic surgery may be helpful for patients with muscular dystrophies. Cardiac problems that occur with some laminopathies may require a pacemaker. Treatment for neuropathies may include medication for seizures and spasticity.
The recent progress in uncovering the molecular mechanisms of toxic progerin formation in laminopathies leading to premature aging has opened up the potential for the development of targeted treatment. The farnesylation of prelamin A and its pathological form progerin is carried out by the enzyme farnesyl transferase. Farnesyl transferase inhibitors (FTIs) can be used effectively to reduce symptoms in two mouse model systems for progeria and to revert the abnormal nuclear morphology in progeroid cell cultures. Two oral FTIs, lonafarnib and tipifarnib, are already in use as anti-tumor medication in humans and may become avenues of treatment for children suffering from laminopathic progeria. Nitrogen-containing bisphosphate drugs used in the treatment of osteoporosis reduce farnesyldiphosphate production and thus prelamin A farnesylation. Testing of these drugs may prove them to be useful in treating progeria as well. The use of antisense oligonucleotides to inhibit progerin synthesis in affected cells is another avenue of current research into the development of anti-progerin drugs.
A hereditary CNS demyelinating disease is a demyelinating central nervous system disease that is primarily due to an inherited genetic condition. (This is in contrast to autoimmune demyelinating conditions, such as multiple sclerosis, or conditions such as central pontine myelinolysis that are associated with acute acquired insult.)
Examples include:
- Alexander disease
- Canavan disease
- Krabbe disease
- leukoencephalopathy with vanishing white matter
- megalencephalic leukoencephalopathy with subcortical cysts
- metachromatic leukodystrophy
- X-linked adrenoleukodystrophy
Sphingolipidoses (singular "sphingolipidosis") are a class of lipid storage disorders relating to sphingolipid metabolism. The main members of this group are Niemann–Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay–Sachs disease and metachromatic leukodystrophy. They are generally inherited in an autosomal recessive fashion, but notably Fabry disease is X-linked recessive. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000, but substantially more in certain populations such as Ashkenazi Jews. Enzyme replacement therapy is available to treat mainly Fabry disease and Gaucher disease, and people with these types of sphingolipidoses may live well into adulthood. The other types are generally fatal by age 1 to 5 years for infantile forms, but progression may be mild for juvenile- or adult-onset forms.
Hereditary spastic paraplegias can be classified based on the symptoms; mode of inheritance; the patient’s age at onset; the affected genes; and biochemical pathways involved.
Laminopathies ("" + "") are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina. They are included in the more generic term "nuclear envelopathies" that was coined in 2000 for diseases associated with defects of the nuclear envelope. Since the first reports of laminopathies in the late 1990s, increased research efforts have started to uncover the vital role of nuclear envelope proteins in cell and tissue integrity in animals.
Initial diagnosis of HSPs relies upon family history, the presence or absence of additional signs and the exclusion of other nongenetic causes of spasticity, the latter being particular important in sporadic cases.
Cerebral and spinal MRI is an important procedure performed in order to rule out other frequent neurological conditions, such as multiple sclerosis, but also to detect associated abnormalities such as cerebellar or corpus callosum atrophy as well as white matter abnormalities. Differential diagnosis of HSP should also exclude spastic diplegia which presents with nearly identical day-to-day effects and even is treatable with similar medicines such as baclofen and orthopedic surgery; at times, these two conditions may look and feel so similar that the only "perceived" difference may be HSP's hereditary nature versus the explicitly non-hereditary nature of spastic diplegia (however, unlike spastic diplegia and other forms of spastic cerebral palsy, HSP cannot be reliably treated with selective dorsal rhizotomy).
Ultimate confirmation of HSP diagnosis can only be provided by carrying out genetic tests targeted towards known genetic mutations.
Currently there is no single diagnosis test for MS that is 100% sensitive and specific. To have such a thing would require a standardised definition of the disease, which currently does not exist. The most commonly used definition, based in the McDonald criteria, focuses in the presence and distribution of the lesions, not in the underlying condition that produces them. Therefore, even twins with the same underlying condition can be classified different