Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is important to exclude a tumor which is directly extending into the ear canal from the parotid salivary gland, especially when dealing with an adenoid cystic or mucoepidermoid carcinoma. This can be eliminated by clinical or imaging studies. Otherwise, the histologic differential diagnosis includes a ceruminous adenoma (a benign ceruminous gland tumor) or a neuroendocrine adenoma of the middle ear (middle ear adenoma).
There are many diagnostic methods that can be used to determine the type of salivary gland tumour and if it is benign or malignant. Examples of diagnostic methods include:
Physical exam and history: An exam of the body to check general signs of health. The head, neck, mouth, and throat will be checked for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken.
Endoscopy: A procedure to look at organs and tissues inside the body to check for abnormal areas. For salivary gland cancer, an endoscope is inserted into the mouth to look at the mouth, throat, and larynx. An endoscope is a thin, tube-like instrument with a light and a lens for viewing.
MRI
Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer.
Fine needle aspiration (FNA) biopsy: The removal of tissue or fluid using a thin needle. An FNA is the most common type of biopsy used for salivary gland cancer, and has been shown to produce accurate results when differentiating between benign and malignant tumours.
Radiographs: An OPG (orthopantomogram) can be taken to rule out mandibular involvement. A chest radiograph may also be taken to rule out any secondary tumours.
Ultrasound: Ultrasound can be used to initially assess a tumour that is located superficially in either the submandibular or parotid gland. It can distinguish an intrinsic from an extrinsic neoplasm. Ultrasonic images of malignant tumours include ill defined margins.
ASAP is considered an indication for re-biopsy; in one survey of urologists 98% of respondents considered it a sufficient reason to re-biopsy.
The diagnosis is based on tissue examination, e.g. biopsy.
The name of the lesion describes it microscopic appearance. It has nipple-like structures with fibrovascular cores () that are long in relation to their width (villus-like), which are covered with a glandular pseudostratified columnar epithelium.
Wide, radical, complete surgical excision is the treatment of choice, with free surgical margins to achieve the best outcome and lowest chance of recurrence. Radiation is only used for palliation. In general, there is a good prognosis, although approximately 50% of patients die from disease within 3–10 years of presentation.
Surgical treatment remains the treatment of choice for cats and dogs diagnosed with intestinal tumors who are in otherwise good health.
On a subsequent biopsy, given the diagnosis of ASAP, the chance of finding prostate adenocarcinoma is approximately 40%; this is higher than if there is high-grade prostatic intraepithelial neoplasia (HGPIN).
The veterinarian will typically perform a series of tests such as blood tests and imaging studies. The most definitive way to confirm/rule out intestinal tumors is to perform a medical procedure called endoscopy to visualize the organ and do a tissue biopsy.
HGPIN is diagnosed from tissue by a pathologist, which may come from:
- a needle biopsy taken via the rectum and,
- surgical removal of prostate tissue:
- transurethral resection of the prostate - removal of extra prostate tissue to improve urination (a treatment for benign prostatic hyperplasia),
- radical prostatectomy - complete removal of prostate and seminal vesicles (a treatment for prostate cancer).
Blood tests for prostate specific antigen (PSA), digital rectal examination, ultrasound scanning of the prostate via the rectum, fine needle aspiration or medical imaging studies (such as magnetic resonance imaging) are "not" useful for diagnosing HGPIN.
IPMs are diagnosed by examination of the tissue by a pathologist.
They have a rim of peripheral lymphoid tissue (remnant of a lymph node) and consist of spindle cells with nuclear palisading. Red blood cell extravasation is common and blood vessels surrounded by collagen with (fine) peripheral spokes (amianthoid fibers) are usually seen.
Immunostains for smooth muscle actin and cyclin D1 are characteristically positive. The main histologic differential diagnosis is schwannoma.
After the initial diagnosis of Barrett's esophagus is rendered, affected persons undergo annual surveillance to detect changes that indicate higher risk to progression to cancer: development of epithelial dysplasia (or "intraepithelial neoplasia").
Considerable variability is seen in assessment for dysplasia among pathologists. Recently, gastroenterology and GI pathology societies have recommended that any diagnosis of high-grade dysplasia in Barrett be confirmed by at least two fellowship-trained GI pathologists prior to definitive treatment for patients. For more accuracy and reproductibility, it is also recommended to follow international classification system as the "Vienna classification" of gastrointestinal epithelial neoplasia (2000).
The presence of goblet cells, called intestinal metaplasia, is necessary to make a diagnosis of Barrett's esophagus. This frequently occurs in the presence of other metaplastic columnar cells, but only the presence of goblet cells is diagnostic. The metaplasia is grossly visible through a gastroscope, but biopsy specimens must be examined under a microscope to determine whether cells are gastric or colonic in nature. Colonic metaplasia is usually identified by finding goblet cells in the epithelium and is necessary for the true diagnosis.
Many histologic mimics of Barrett's esophagus are known (i.e. goblet cells occurring in the transitional epithelium of normal esophageal submucosal gland ducts, "pseudogoblet cells" in which abundant foveolar [gastric] type mucin simulates the acid mucin true goblet cells). Assessment of relationship to submucosal glands and transitional-type epithelium with examination of multiple levels through the tissue may allow the pathologist to reliably distinguish between goblet cells of submucosal gland ducts and true Barrett's esophagus (specialized columnar metaplasia). Use of the histochemical stain Alcian blue pH 2.5 is also frequently used to distinguish true intestinal-type mucins from their histologic mimics. Recently, immunohistochemical analysis with antibodies to CDX-2 (specific for mid and hindgut intestinal derivation) has also been used to identify true intestinal-type metaplastic cells. The protein AGR2 is elevated in Barrett's esophagus and can be used as a biomarker for distinguishing Barrett epithelium from normal esophageal epithelium.
The presence of intestinal metaplasia in Barrett's esophagus represents a marker for the progression of metaplasia towards dysplasia and eventually adenocarcinoma. This factor combined with two different immunohistochemical expression of p53, Her2 and p16 leads to two different genetic pathways that likely progress to dysplasia in Barrett's esophagus.
The diagnosis of urachal cancer can be difficult and usually requires a multidisciplinary approach. A calcification in the midline can be detected in some patients in abdominal imaging studies. A cystoscopy is helpful in most cases. For diagnosis evaluation of a tissue biopsy is needed, which is usually obtained by transurethral resection (TURBT). Measurement of serum concentrations of CEA, CA19-9 and CA125 can be helpful in monitoring urachal cancer
HGPIN in isolation does not require treatment. In prostate biopsies it is not predictive of prostate cancer in one year if the prostate was well-sampled, i.e. if there were 8 or more cores.
The exact timing of repeat biopsies remains an area of controversy, as the time required for, and probability of HGPIN transformations to prostate cancer are not well understood.
It is important to include that the lesion is associated with another cancer. A biopsy will establish the diagnosis. The histology of the lesion is the same as for Paget's disease of the breast.
OPA has been found in most countries where sheep are farmed, with the exception of Australia and New Zealand. OPA has been eradicated in Iceland.
No breed or sex of sheep appears to be predisposed to OPA. Most affected sheep show signs at 2 to 4 years of age.
OPA is not a notifiable disease, and therefore it is difficult to assess its prevalence.
The criteria for diagnosing BACs have changed since 1999. Under the new definition, BAC is defined as a tumor that grows in a lepidic (that is, a scaly covering) fashion along pre-existing airway structures, without detectable invasion or destruction of the underlying tissue, blood vessels, or lymphatics. Because invasion must be ruled out, BAC can be diagnosed only after complete sectioning and examination of the entire tumor, not using biopsy or cytology samples. BAC is considered a pre-invasive malignant lesion that, after further mutation and progression, eventually generates an invasive adenocarcinoma. Therefore, it is considered a form of carcinoma "in situ" (CIS).
People with Barrett's esophagus (a change in the cells lining the lower esophagus) are at much higher risk, and may receive regular endoscopic screening for the early signs of cancer. Because the benefit of screening for adenocarcinoma in people without symptoms is unclear, it is not recommended in the United States. Some areas of the world with high rates of squamous-carcinoma have screening programs.
Several tests are used to diagnose vaginal cancer, including:
- Physical exam and history
- Pelvic exam
- Pap smear
- Biopsy
- Colposcopy
Recommendations for women with vaginal cancer is not to have routine surveillance imaging to monitor the cancer unless they have new symptoms or rising tumor markers. Imaging without these indications is discouraged because it is unlikely to detect a recurrence or improve survival, and because it has its own costs and side effects. MRI provides visualization of the extent of vaginal cancer.
Prevention
Urachal cancer usually is an adenocarcinoma (about 90%) mostly with mucinous/colloidal histology. The histology can be difficult to distinguish especially from colorectal cancer and primary adenocarcinoma of the urinary bladder. Immunohistochemistry in this situation is of little help with stains for betaCatenin and Cytokeratin 7 can be helpful. Other rare types include urothelial carcinoma, squamous cell carcinoma, neuroendocrine carcinoma and sarcoma.
Diagnostic systems in use are the Sheldon system based on proposals from Wheeler and Hill and Mostofi. Recent diagnostic classification schemes have been proposed by Herr et al and Gopalan et al. For non-adenocarcinoma urachal cancer a diagnostic classification scheme has been proposed by Paner et al.
PLGAs are treated with wide local surgical excision and long-term follow-up.
There is a recurrence rate of 14% (Peterson, contemporary of oral and maxillofacial surgery).
The treatment is dependent on the stage. As the prognosis of this tumour is usually good, fertility sparing approaches (conization, cervicectomy) may be viable treatment options.
Diagnostic tests typically include complete blood tests, urinalysis, urine culture, X-rays of the abdomen and chest, and bladder imaging. The definitive diagnosis of bladder cancer will require a tissue biopsy and subsequent examination of the cells under the microscope.
Diagnosis of EIN lesions is of clinical importance because of the increased risk of coexisting (39% of women with EIN will be diagnosed with carcinoma within one year) or future (the long term endometrial cancer risk is 45 times greater for a woman with EIN compared to one with only a benign endometrial histology) endometrial cancer. Diagnostic terminology is that used by pathologists, physicians who diagnose human disease by examination of histologic preparations of excised tissues. Critical distinctions in EIN diagnosis are separation from benign conditions such as benign endometrial hyperplasia (a field effect in endometrial tissue caused by excessive stimulation by the hormone estrogen), and cancer.
The spectrum of disease which must be distinguished from EIN (Table II) includes benign endometrial hyperplasia and carcinoma:
Table II: Disease classes that need to be distinguished from EIN.
EIN may be diagnosed by a trained pathologist by examination of tissue sections of the endometrium. All of the following diagnostic criteria must be met in a single area of one tissue fragment to make the diagnosis (Table III).
Table III: EIN diagnosis.
Paget's disease of the vulva, a rare disease, may be a primary lesion or associated with adenocarcinoma originating from local organs such as the Bartholin gland, the urethra, or the rectum and thus be secondary. Patients tend to be postmenopausal.
Paget's disease of the penis may also be primary or secondary, and is even rarer than genital Paget’s disease in women. At least one case has been misdiagnosed as Bowen's disease. Isolated Paget's disease of the penis is extremely rare.