Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Subtypes of the syndrome are traceable to different genetic variations and presentations:
Type III is also known as Klein-Waardenburg syndrome, and type IV is also known as Waardenburg-Shah syndrome.
Blood lactate and pyruvate levels usually are elevated as a result of increased anaerobic metabolism and a decreased ratio of ATP:ADP. CSF analysis shows an elevated protein level, usually >100 mg/dl, as well as an elevated lactate level.
Revesz syndrome has so far been observed only in children. There is not much information about the disease because of its low frequency in general population and under reporting of cases.
A neuro-ophthalmologist is usually involved in the diagnosis and management of KSS. An individual should be suspected of having KSS based upon clinical exam findings. Suspicion for myopathies should be increased in patients whose ophthalmoplegia does not match a particular set of cranial nerve palsies (oculomotor nerve palsy, fourth nerve palsy, sixth nerve palsy). Initially, imaging studies are often performed to rule out more common pathologies. Diagnosis may be confirmed with muscle biopsy, and may be supplemented with PCR determination of mtDNA mutations.
Cardiac myxomas can be difficult to manage surgically because of recurrence within the heart, often far away from the site of the initial tumor.
Revesz syndrome is a genetic disease thought to be caused by short telomeres. Patients with Revesz syndrome have presented with heterozygous mutations in TINF2 gene which is located on chromosome 14q12. There is no treatment for this disease yet.
Rothmund–Thomson syndrome (RTS), also known as poikiloderma atrophicans with cataract or poikiloderma congenitale, is a rare autosomal recessive skin condition originally described by August von Rothmund (1830–1906) in 1868. Matthew Sydney Thomson (1894–1969) published further descriptions in 1936.
There have been several reported cases associated with osteosarcoma. A hereditary genetic basis, mutations in the DNA Helicase "RECQL4" gene, causing problems during initiation of DNA replication has been implicated in the syndrome
The American neurosurgeon Harvey Cushing in 1914 reported a patient with a pituitary tumour that he had operated on. Post mortum finding were suggestive of Carney complex. this condition had yet to be described. In 2017 archived tissue from this operation were subjected to DNA sequencing. This revealed a Arg74His (Arginine to Histidine: Guanine (G)-> Adenosine (A) transition in the second codon position of the 74 codon in the protein) mutation in the PRKAR1A gene confirming the diagnosis of Carney complex. Cushing's paper appears to be the first report of this complex.
Naegeli–Franceschetti–Jadassohn syndrome (NFJS), also known as chromatophore nevus of Naegeli and Naegeli syndrome, is a rare autosomal dominant form of ectodermal dysplasia, characterized by reticular skin pigmentation, diminished function of the sweat glands, the absence of teeth and hyperkeratosis of the palms and soles. One of the most striking features is the absence of fingerprint lines on the fingers.
Naegeli syndrome is similar to dermatopathia pigmentosa reticularis, both of which are caused by a specific defect in the keratin 14 protein.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
Focal dermal hypoplasia has been associated with PORCN gene mutations on the X chromosome. 90% of the individuals who are affected with the syndrome are female: the commonly accepted, though unconfirmed, explanation for this is that the non-mosaic hemizygous males are not viable.
The differential diagnosis of focal dermal hypoplasia (Goltz) syndrome includes autosomal recessive Setleis syndrome due to TWIST2 gene mutations. It associated with morning glory anomaly, polymicrogyria, incontinentia pigmenti, oculocerebrocutaneous syndrome, Rothmund-Thomson syndrome and microphthalmia with linear skin defects (also known as MLS) syndrome because they are all caused by deletions or point mutations in the HCCS gene.
The cause of the disease is unknown. It was originally thought that the epidermal changes were secondary to profound malnutrition as a result of protein-losing enteropathy. Recent findings have called this hypothesis into question; specifically, the hair and nail changes may not improve with improved nutrition.
Other conditions consisting of multiple hamartomatous polyps of the digestive tract include Peutz-Jeghers syndrome, juvenile polyposis, and Cowden disease. Related polyposis conditions are familial adenomatous polyposis, attenuated familial adenomatous polyposis, Birt–Hogg–Dubé syndrome and MUTYH.
Treatment is supportive.
- The aplastic anemia and immunodeficiency can be treated by bone marrow transplantation.
- Supportive treatment for gastrointestinal complications and infections.
- Genetic counselling.
Common diagnostic techniques include:
- MRIs
- CAT scans
- blood samples.
Blood samples are assessed for the absence or presence of aldosterone and cortisol. Physical examinations are also useful in patients in order to examine vision, skin pigmentation, how the body replaces steroids, and the cranial nerves. Recent advancements in high-resolution MRIs allow for adenomas to be detected during the early stages of Nelson syndrome. Physical examination including height, weight, vital signs, blood pressure, eye examination, thyroid examination, abdominal examination, neurological examination, skin examination and pubertal staging needs to be assessed. Through blood pressure and pulse readings can indicate hypothyroidism and adrenal insufficiency. Hyper-pigmentation, hyporeflexia, and loss of vision can also indicate Nelson's syndrome when assessed together. Specifically for a child who might have Nelson's syndrome, the patient should be questioned about the symptoms of the disease, and well as symptoms of other diseases to narrow down which disease the patient presents with. The patient should be questioned about how often and to what degree headaches, visual disturbances, and symptoms associated with pituitary malfunction occur. Additionally, adrenal steroid replacement should be assessed, especially in children who have prior insufficiency associated wit
The skin is normal at birth. Between 3 and 6 months of age, the affected carrier develops poikiloderma on the cheeks. This characteristic "rash" that all RTS carriers have can develop on the arms, legs and buttocks. "Poikiloderma consists of areas of increased and decreased pigmentation, prominent blood vessels, and thinning of the skin."
Focal dermal hypoplasia (also known as "Goltz syndrome") is a form of ectodermal dysplasia. It is a multisystem disorder characterized primarily by skin manifestations to the atrophic and hypoplastic areas of skin which are present at birth. These defects manifest as yellow-pink bumps on the skin and pigmentation changes. The disorder is also associated with shortness of stature and some evidence suggests that it can cause epilepsy.
Common treatments for Nelson's syndrome include radiation or surgical procedure. Radiation allows for the limitation of the growth of the pituitary gland and the adenomas. If the adenomas start to affect the surrounding structures of the brain, then a micro-surgical technique can be adapted in order to remove the adenomas in a transsphenoidal (bone at base of the skull) process. Death may result with development of a locally aggressive pituitary tumor. However, does not commonly occur with pituitary diseases. In the rare case, ACTH-secreting tumors can become malignant. Morbidity from the disease can occur due to pituitary tissue compression or replacement, and compression of structures that surround the pituitary fossa. The tumor can also compress the optic apparatus, disturb cerebrospinal fluid flow, meningitis, and testicular enlargement in rare cases.
NFJS is caused by mutations in the keratin 14 (KRT14) gene, located on chromosome 17q12-21. The disorder is inherited in an autosomal dominant manner, which means that the defective gene responsible for a disorder is located on an autosome (chromosome 17 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Cronkhite–Canada syndrome is a rare syndrome characterized by multiple polyps of the digestive tract. It is sporadic (i.e. it does not seem to be a hereditary disease), and it is currently considered acquired and idiopathic (i.e. cause remains unknown).
About two-thirds of patients are of Japanese descent and the male to female ratio is 2:1. It was characterized in 1955.
Genetically, there is a postzygotic mutation (spontaneous mutation) of the gene GNAS, on the long (q) arm of chromosome 20 at position 13.3, which is involved in G-protein signaling. This mutation, which occurs only in the mosaic state, leads to constitutive receptor signaling and inappropriate production of excess cAMP.
The mutation that causes McCune–Albright syndrome arises very early during embryogenesis. It is not passed down from parent to child. There are no known risk factors for acquiring McCune–Albright syndrome, and no exposures during pregnancy that are known to either cause or prevent the mutation from occurring.
Although the pathogenesis of HHS remains unknown, it is strongly suspected that the clinical sequelae of HHS arise from the accelerated telomere shortening present in HHS patients.
A 1991 report documented the cases of nine patients with both Becker's nevus and malignant melanoma. Of the nine melanomas, five were in the same body area as the Becker's nevus, with only one occurring within the nevus itself. As this was apparently the first documented co-occurrence of the two diseases, there is so far no evidence of higher malignancy rates in Becker's nevi versus normal skin. Nonetheless, as with any abnormal skin growth, the nevus should be monitored regularly and any sudden changes in appearance brought to the attention of one's doctor.
McCune–Albright syndrome is suspected when two or more of the following features are present:
- Hyperfunctioning endocrine disease (gonadotropin independent precocious puberty, hyperthyroidism, growth hormone excess, neonatal Cushing syndrome)
- Fibrous dysplasia
- Café au lait macules
Patients may have one or many of these features, which may occur in any combination.
The clinical presentation varies greatly depending on the disease features. Patients with fibrous dysplasia may have bone fractures, pain, and deformities.
Cafe-au-lait skin macules tend to have characteristic features, including jagged "coast of Maine" borders, and location respecting the midline of the body.
Endocrine disease in McCune–Albright syndrome results from increased hormone production. The most common endocrinopathy is precocious puberty, which presents in girls with recurrent estrogen-producing cysts leading to episodic breast development, growth acceleration, and vaginal bleeding. Precocious puberty may also occur in boys with McCune–Albright syndrome, but is much less common. Additional potential endocrinopathies include hyperthyroidism and growth hormone excess. Cushing syndrome is a very rare feature that develops only in infancy. Patients with polyostotic fibrous dysplasia may develop low blood phosphate levels due to overproduction of the hormone fibroblast growth factor-23.
McCune–Albright syndrome has different levels of severity. For example, one child with McCune–Albright syndrome may be entirely healthy, with no outward evidence of bone or endocrine problems, enter puberty at close to the normal age, and have no unusual skin pigmentation. Diagnosis may be made only after decades. In other cases, children are diagnosed in early infancy, show obvious bone disease, and obvious increased endocrine secretions from several glands.
As Becker's nevus is considered a benign lesion, treatment is generally not necessary except for cosmetic purposes. Shaving or trimming can be effective in removing unwanted hair, while electrology or laser hair removal may offer a longer-lasting solution. Different types of laser treatments may also be effective in elimination or reduction of hyperpigmentation, though the results of laser treatments for both hair and pigment reduction appear to be highly variable.