Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Laryngotracheal stenosis is an umbrella term for a wide and heterogeneous group of very rare conditions. The population incidence of adult post-intubation laryngotracheal stenosis which is the commonest benign sub-type of this condition is approximately 1 in 200,000 adults per year. The main causes of adult laryngotracheal stenosis are:
The optimal management of laryngotracheal stenosis is not well defined, depending mainly on the type of the stenosis.
General treatment options include
1. Tracheal dilation using rigid bronchoscope
2. Laser surgery and endoluminal stenting
3. Tracheal resection and laryngotracheal reconstructionr
Tracheal is used to temporarily enlarge the airway. The effect of dilation typically lasts from a few days to 6 months. Several studies have shown that as a result of mechanical dilation (used alone) may occur a high mortality rate and a rate of recurrence of stenosis higher than 90%.
Thus, many authors treat the stenosis by endoscopic excision with laser (commonly either the carbon dioxide or the neodymium: yttrium aluminum garnet laser) and then by using bronchoscopic dilatation and prolonged stenting with a T-tube (generally in silicone).
There are differing opinions on treating with laser surgery.
In very experienced surgery centers, tracheal resection and reconstruction (anastomosis complete end-to-end with or without laryngotracheal temporary stent to prevent airway collapse) is currently the best alternative to completely cure the stenosis and allows to obtain good results. Therefore, it can be considered the gold standard treatment and is suitable for almost all patients.
The narrowed part of the trachea will be cut off and the cut ends of the trachea sewn together with sutures. For stenosis of length greater than 5 cm a stent may be required to join the sections.
Late June or early July 2010, a new potential treatment was trialed at Great Ormond Street Hospital in London, where Ciaran Finn-Lynch (aged 11) received a transplanted trachea which had been injected with stem cells harvested from his own bone marrow. The use of Ciaran's stem cells was hoped to prevent his immune system from rejecting the transplant, but there remain doubts about the operation's success, and several later attempts at similar surgery have been unsuccessful.
Vessel restenosis is typically detected by angiography, but can also be detected by duplex ultrasound and other imaging techniques.
Unfortunately, coarctations can not be prevented because they are usually present at birth. The best thing for patients who are affected by coarctations is early detection. Some signs that can lead to a coarctation have been linked to pathologies such as Turner syndrome, bicuspid aortic valve, and other family heart conditions.
The diagnosis of pulmonary valve stenosis can be achieved via echocardiogram, as well as a variety of other means among them are: ultrasound, in which images of the heart chambers in utero where the tricuspid valve has thickening (or due to Fallot's tetralogy, Noonan's syndrome, and other congenital defects) and in infancy auscultation of the heart can reveal identification of a murmur.
Some other conditions to contemplate (in diagnosis of pulmonic valvular stenosis) are the following:
- Infundibular stenosis
- Supravalvular pulmonary stenosis
- Dysplastic pulmonic valve stenosis
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
In peripheral procedures, rates are still high. A 2003 study of selective and systematic stenting for limb-threatening ischemia reported restenosis rates at 1 year follow-up in 32.3% of selective stenting patients and 34.7% of systematic stenting patients.
The 2006 SIROCCO trial compared the sirolimus drug-eluting stent with a bare nitinol stent for atherosclerotic lesions of the superficial femoral artery, reporting restenosis at 2 year follow-up was 22.9% and 21.1%, respectively.
A 2009 study compared bare nitinol stents with percutaneous transluminal angioplasty (PTA) in superficial femoral artery disease. At 1 year follow-up, restenosis was reported in 34.4% of stented patients versus 61.1% of PTA patients.
Phase contrast-MRI is an imaging method which is more sensitive than MRI for analysis of the pulsatile CSF flow in the ventricular system. This method takes multiple images of the ventricles within one cardiac cycle to measure the flow of CSF running past the area of acquisition. If no flow is seen, this is a reliable diagnosis of aqueductal stenosis as it implies that there is a blockage of CSF.
Ultrasonography can be used in utero to diagnose aqueductal stenosis by showing dilation of the lateral and third ventricles. A retrospective study found that diagnosis can be made as early as 19 weeks of gestation, and that on average diagnosis is made at 33 weeks. Unfortunately, prenatal diagnosis still has a poor prognosis even with immediate treatment upon birth.
MRI is considered the best method of detecting aqueductal stensosis because it can visualize the entire length of the aqueduct, can clearly depict tumors, and can show ventricle enlargement or other deformations. It is helpful in determining the extent of the aqueductal obstruction, particularly when multiple masses or lesions are present, and thereby aids in determining the most appropriate treatment method (i.e. surgery, shunt, or ETV). When constructive interference in steady state (CISS) or fast imaging employing steady-state acquisition (FIESTA) sequence are used, subtle abnormalities or partial obstructions in the aqueduct can be depicted in the MRI. For example, CISS can be used to determine if a thin membrane interfering with CSF flow is present.
Diagnosis is via a careful history and physical examination, often supplemented by radiographic imaging studies. Pyloric stenosis should be suspected in any young infant with severe vomiting. On physical exam, palpation of the abdomen may reveal a mass in the epigastrium. This mass, which consists of the enlarged pylorus, is referred to as the 'olive', and is sometimes evident after the infant is given formula to drink. Rarely, there are peristaltic waves that may be felt or seen (video on NEJM) due to the stomach trying to force its contents past the narrowed pyloric outlet.
Most cases of pyloric stenosis are diagnosed/confirmed with ultrasound, if available, showing the thickened pylorus and non-passage of gastric contents into the proximal duodenum. Muscle wall thickness 3 millimeters (mm) or greater and pyloric channel length of 15 mm or greater are considered abnormal in infants younger than 30 days.
Although somewhat less useful, an upper GI series (x-rays taken after the baby drinks a special contrast agent) can be diagnostic by showing the narrowed pyloric outlet filled with a thin stream of contrast material; a "string sign" or the "railroad track sign". For either type of study, there are specific measurement criteria used to identify the abnormal results. Plain x-rays of the abdomen sometimes shows a dilated stomach.
Although UGI endoscopy would demonstrate pyloric obstruction, physicians would find it difficult to differentiate accurately between hypertrophic pyloric stenosis and pylorospasm.
Blood tests will reveal low blood levels of potassium and chloride in association with an increased blood pH and high blood bicarbonate level due to loss of stomach acid (which contains hydrochloric acid) from persistent vomiting. There will be exchange of extracellular potassium with intracellular hydrogen ions in an attempt to correct the pH imbalance. These findings can be seen with severe vomiting from any cause.
Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway. Although it is relatively rare, it is the third most common congenital airway problem (after laryngomalacia and vocal cord paralysis). Subglottic stenosis can present as a life-threatening airway emergency. It is imperative that the otolaryngologist be an expert at dealing with the diagnosis and management of this disorder. Subglottic stenosis can affect both children and adults.
Subglottic stenosis can be of three forms, namely congenital subglottic stenosis, idiopathic subglottic stenosis (ISS) and acquired subglottic stenosis. As the name suggests, congenital subglottic stenosis is a birth defect. Idiopathic subglottic stenosis is a narrowing of the airway due to an unknown cause. Acquired subglottic stenosis generally follows as an after-effect of airway intubation, and in extremely rare cases as a result of gastroesophageal reflux disease (GERD).
Subglottic stenosis is graded according to the Cotton-Meyer classification system from one to four based on the severity of the blockage.
Grade 1 – <50% obstruction
Grade 2 – 51–70% obstruction
Grade 3 – 71–99% obstruction
Grade 4 – no detectable lumen
Treatments to alleviate the symptoms of subglottic stenosis includes a daily dose of steroids such as prednisone, which reduces the inflammation of the area for better breathing. Other medications such as Methotrexate is also being tested by patients but results are pending.
Leaving the hospital after a coarctation procedure is only one step in a lifelong process. Just because the coarctation was fixed does not mean that the patient is cured. It is extremely important to visit the cardiologist on a regular basis. Depending on the severity of the patient's condition, which is evaluated on a case-by-case level, visiting a cardiologist can be a once a year surveillance check up. Keeping a regular schedule of appointments with a cardiologist after a coarctation procedure is complete helps increase the chances of survivability for the patients.
If untreated, severe symptomatic aortic stenosis carries a poor prognosis with a 2-year mortality rate of 50-60% and a 3-year survival rate of less than 30%. Prognosis after aortic valve replacement for people who are younger than 65 is about five years less than that of the general population; for people older than 65 it is about the same.
A chest X-ray can also assist in the diagnosis and provide clues as to the severity of the disease, showing the degree of calcification of the valve, and in a chronic condition, an enlarged left ventricle and atrium.
The treatment of choice is percutaneous balloon valvuloplasty and is done when a resting peak gradient is seen to be >60mm Hg or a mean >40mm Hg is observed.
Chest X-ray may also assist in diagnosis, showing left atrial enlargement.
Electrocardiography may show "P mitrale", that is, broad, notched P waves in several or many leads with a prominent late negative component to the P wave in lead V, and may also be seen in mitral regurgitation, and, potentially, any cause of overload of the left atrium. Thus, "P-sinistrocardiale" may be a more appropriate term.
Heyde's syndrome is now known to be gastrointestinal bleeding from angiodysplasic lesions due to acquired vWD-2A deficiency secondary to aortic stenosis, and the diagnosis is made by confirming the presence of those three things. Gastrointestinal bleeding may present as bloody vomit, dark, tarry stool from metabolized blood, or fresh blood in the stool. In a person presenting with these symptoms, endoscopy, gastroscopy, and/or colonoscopy should be performed to confirm the presence of angiodysplasia. Aortic stenosis can be diagnosed by auscultation for characteristic heart sounds, particularly a crescendo-decrescendo (i.e., 'ejection') murmur, followed by echocardiography to measure aortic valve area (see diagnosis of aortic stenosis). While Heyde's syndrome may exist alone with no other symptoms of aortic stenosis, the person could also present with evidence of heart failure, fainting, or chest pain. Finally, Heyde's syndrome can be confirmed using blood tests for vWD-2A, although traditional blood tests for von Willebrand factor may result in false negatives due to the subtlety of the abnormality. The gold standard for diagnosis is gel electrophoresis; in people with vWD-2A, the large molecular weight von Willebrand factors will be absent from the SDS-agarose electrophoresis plate.
A chest x-ray will be given to determine the size of the heart and the blood vessels supplying blood to the lungs.
A color flow and doppler imaging is used to help confirm the presence as well as evaluate the severity of ASD and MS.
Stenoses of the vascular type are often associated with unusual blood sounds resulting from turbulent flow over the narrowed blood vessel. This sound can be made audible by a stethoscope, but diagnosis is generally made or confirmed with some form of medical imaging.
The resulting syndrome depends on the structure affected.
Examples of vascular stenotic lesions include:
- Intermittent claudication (peripheral artery stenosis)
- Angina (coronary artery stenosis)
- Carotid artery stenosis which predispose to (strokes and transient ischaemic episodes)
- Renal artery stenosis
The types of stenoses in heart valves are:
- Pulmonary valve stenosis, which is the thickening of the pulmonary valve, therefore causing narrowing
- Mitral valve stenosis, which is the thickening of the mitral valve (of the left heart), therefore causing narrowing
- Tricuspid valve stenosis, which is the thickening of the tricuspid valve (of the right heart), therefore causing narrowing
- Aortic valve stenosis, which is the thickening of the aortic valve, therefore causing narrowing
Stenoses/strictures of other bodily structures/organs include:
- Pyloric stenosis (gastric outflow obstruction)
- Lumbar, cervical or thoracic spinal stenosis
- Subglottic stenosis (SGS)
- Tracheal stenosis
- Obstructive jaundice (biliary tract stenosis)
- Bowel obstruction
- Phimosis
- Non-communicating hydrocephalus
- Stenosing tenosynovitis
- Atherosclerosis
- Esophageal stricture
- Achalasia
- Prinzmetal angina
- Vaginal stenosis
Another method of measuring the severity of mitral stenosis is the simultaneous left and right heart chamber catheterization. The right heart catheterization (commonly known as Swan-Ganz catheterization) gives the physician the mean pulmonary capillary wedge pressure, which is a reflection of the left atrial pressure. The left heart catheterization, on the other hand, gives the pressure in the left ventricle. By simultaneously taking these pressures, it is possible to determine the gradient between the left atrium and left ventricle during ventricular diastole, which is a marker for the severity of mitral stenosis. This method of evaluating mitral stenosis tends to overestimate the degree of mitral stenosis, however, because of the time lag in the pressure tracings seen on the right-heart catheterization and the slow Y descent seen on the wedge tracings. If a trans-septal puncture is made during right heart catheterization, however, the pressure gradient can accurately quantify the severity of mitral stenosis.
Fetal aortic valve stenosis can be diagnosed by echocardiography before birth. The diagnostic features include a poorly contracting left ventricle, aortic valve thickening/restriction, a varying degree of left ventricular hypertrophy and abnormal Doppler flow characteristics in the left heart. There may be little or no detectable flow into or out of the left side of the heart.
There are two screening periods, one during the first trimester and the other during the second trimester. Fetal aortic stenosis is typically detected between 18 and 24 weeks gestation. This early detection is important because it allows for parents to be counseled in a timely and rational manner, allowing for discussion of prognosis and possible outcomes. Another reason for this crucial early detection is because it allows for postnatal management planning.
Infantile pyloric stenosis is typically managed with surgery; very few cases are mild enough to be treated medically.
The danger of pyloric stenosis comes from the dehydration and electrolyte disturbance rather than the underlying problem itself. Therefore, the baby must be initially stabilized by correcting the dehydration and the abnormally high blood pH seen in combination with low chloride levels with IV fluids. This can usually be accomplished in about 24–48 hours.
Intravenous and oral atropine may be used to treat pyloric stenosis. It has a success rate of 85-89% compared to nearly 100% for pyloromyotomy, however it requires prolonged hospitalization, skilled nursing and careful follow up during treatment. It might be an alternative to surgery in children who have contraindications for anesthesia or surgery, or in children whose parents do not want surgery.
In boys, history and physical exam is adequate to make the diagnosis. In girls, VCUG (voiding cystourethrogram) is usually diagnostic. Other tests may include:
- Urine analysis
- Urine culture
- CBC, basic metabolic panel
- Renal and bladder ultrasound