Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vocal fold imaging techniques are used by clinicians to examine the vocal folds and allows them to detect vocal pathology and assess the quality of the vocal fold vibrations. Laryngeal stroboscopy is the primary clinical tool used for this purpose. Laryngeal stroboscopy uses a synchronized flashing light passed through either a rigid or flexible laryngoscope to provide an image of the vocal fold motion; the image is created by averaging over several vibratory cycles and is thus not provided in real-time. As this technique relies on periodic vocal fold vibration, it cannot be used in patients with moderate to severe dysphonia. High speed digital imaging of the vocal folds (videokymography), another imaging technique, is not subject to the same limitations as laryngeal stroboscopy. A rigid endoscope is used to take images at a rate of 8000 frames per second, and the image is displayed in real time. As well, this technique allows imaging of aperiodic vibrations and can thus be used with patients presenting with all severities of dysphonia.
Acoustic measures can be used to provide objective measures of vocal function. Signal processing algorithms are applied to voice recordings made during sustained phonation or during spontaneous speech. The acoustic parameters which can then be examined include fundamental frequency, signal amplitude, jitter, shimmer, and noise-to-harmonic ratios. However, due to limitations imposed by the algorithms employed, these measures cannot be used with patients who exhibit severe dysphonia.
A number of operations that cut one of the nerves of the vocal folds (the recurrent laryngeal nerve) has improved the voice of many for several months to several years but the improvement may be temporary.
An operation called "selective laryngeal adductor denervation-rennervation (SLAD-R)" is effective specifically for adductor spasmodic dysphonia which has shown good outcomes in about 80% of people at 8 years. Post-surgery voices can be imperfect and about 15% of people have significant difficulties. If symptoms do recur this is typically in the first 12 months. Another operation called "recurrent laryngeal nerve avulsion" has positive outcomes of 80% at three years.
Another surgical option is a thyroplasty, which ultimately changes the position or length of the vocal folds. After thyroplasty there is an increase in both objective and subjective measures of speech.
To determine whether a client presents with puberphonia, a complete voice assessment including medical and diagnostic evaluations is recommended. These assessments are performed by otorhinolaryngologists and speech-language pathologists.
Voice therapy appears to be ineffective in cases of true spasmodic dysphonia, however as it is difficult to distinguish between spasmodic dysphonia and functional dysphonias and misdiagnosis is relatively common, a trial of voice therapy is often recommended before more invasive procedures are tried. Some also state that it is useful for mild symptoms and as an add-on to botox therapy and others report success in more severe cases. Laryngeal manual therapy, which is massaging of the neck and cervical structures, also shows positive results for intervention of functional dysphonia.
A behavioural assessment for puberphonia will consist of several types of tasks, and may include:
- Examining for tension in the neck and throat: The clinician will visually examine the area around the larynx to see if the voice box sits high in the throat, and palpate the area to determine whether there is excessive muscular tension.
- Determining the relationship between tension and vocal pitch: The clinician will ask the client to perform warm-up and relaxation exercises such as those listed in the Treatment section below to determine whether the client has access to their modal voice register.
- Establishing vocal range: The clinician will ask the client to produce the lowest and highest pitch that they can, and perform different speaking or singing activities at various pitches.
- Listening for abnormal traits: The clinician will listen for the presence of breathy voice, an indication of speech in the falsetto register, and other distortions of vocal quality.
- Taking aerodynamic measurements: Many individuals with puberphonia may have limited breath support caused by the thoracic or shallow breathing patterns often used to support speech in the falsetto register. These symptoms are assessed using vocal tasks such as maximum phonation time and direct measures of breath support such as glottal airflow and subglottal pressure.
Spasmodic torticollis is a form of focal dystonia, a neuromuscular disorder that consists of sustained muscle contractions causing repetitive and twisting movements and abnormal postures in a single body region. There are two main ways to categorize spasmodic torticollis: age of onset, and cause. The disorder is categorized as early onset if the patient is diagnosed before the age of 27, and late onset thereafter. The causes are categorized as either primary (idiopathic) or secondary (symptomatic). Spasmodic torticollis can be further categorized by the direction and rotation of head movement.
The most commonly used scale to rate the severity of spasmodic torticollis is the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). It has been shown that this rating system has widespread acceptance for use in clinical trials, and has been shown to have “good interobserver reliability.” There are three scales in the TWSTRS: torticollis severity scale, disability scale, and pain scale. These scales are used to represent the severity, the pain, and the general lifestyle of spasmodic torticollis.
Meige's is commonly misdiagnosed and most doctors will have not seen this condition before. Usually a neurologist who specializes in movement disorders can detect Meige's. There is no way to detect Meige's by blood test or MRI or CT scans. OMD by itself may be misdiagnosed as TMJ.
The lack of prompt response to anticholinergic drugs in cases of idiopathic Meige's syndrome is important in differentiating it from acute dystonia, which does respond to anticholinergics.
Since paroxysmal exercise-induced dystonia is such a rare disorder it makes it difficult to study the disease and find consistencies. Many of the current studies seem to have contradicting conclusion but this is due to the fact that studies are usually limited to a very small number of test subjects. With such small numbers it is hard to determine what is a trend and what is random when in comes to characterizing the disease. Further study is needed to find better diagnostic techniques and treatments for PED. Patients with PED are living a limited lifestyle since simple tasks like walking and exercise are often impossible.
There is no cure for torsion dystonia. However, there are several medical approaches that can be taken in order to lessen the symptoms of the disease. The treatment must be patient specific, taking into consideration all of the previous and current health complications. The doctor that creates the treatment must have intimate knowledge of the patients’ health and create a treatment plan that covers all of the symptoms focusing on the most chronic areas.
The first step for most with the disorder begins with some form of physical therapy in order for the patient to gain more control over the affected areas. The therapy can help patients with their posture and gain control over the areas of their body that they have the most problems with.
The second step in the treatment process is medication. The medications focus on the chemicals released by neurotransmitters in the nervous system, which control muscle movement. The medications on the market today are anticholinergics, benzodiazepines, baclofen, dopaminergic agents/dopamine-depleting agents, and tetrabenazine. Each medication is started on a low dosage and gradually increased to higher doses as the disease progresses and the side effects are known for the individual.
A more site-specific treatment is the injection of botulinum toxin. It is injected directly into the muscle and works much the same way the oral medications do—by blocking neurotransmitters. The injections are not a treatment for the disease, but are a means to control its symptoms.
A fourth option in the treatment for the symptoms of torsion dystonia is surgery. Surgery is performed only if the patient does not respond to the oral medications or the injections. The type of surgery performed is specific to the type of dystonia that the patient has.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
Although dystonias may be induced by chemical exposure/ingestion, brain injury, or hereditary/genetic predisposition, the task-specific focal dystonias such as writer's cramp are a unique challenge to diagnose and treat. Some cases may respond to chemical injections - botulinum toxin (botox) is often cited, though it is not helpful in all cases. Behavioral retraining attempts may include writing devices, switching hands, physical therapy, biofeedback, constraint-induced motion therapy, and others. Some writing instruments allow variations of pressure application for use. None of these are effective in all cases, however. The work of Dr. Joaquin Farias has shown that proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost from focal dystonia.
Anticholinergics such as Artane can be prescribed for off-label use, as some sufferers have had success.
While research in the area of effectiveness of physical therapy intervention for dystonia remains weak, there is reason to believe that rehabilitation will benefit patients with dystonia. Physical therapy can be utilized to manage changes in balance, mobility and overall function that occur as a result of the disorder. A variety of treatment strategies can be employed to address the unique needs of each individual. Potential treatment interventions include splinting, therapeutic exercise, manual stretching, soft tissue and joint mobilization, postural training and bracing, neuromuscular electrical stimulation, constraint-induced movement therapy, activity and environmental modification, and gait training.
A patient with dystonia may have significant challenges in activities of daily living (ADL), an area especially suited for treatment by occupational therapy (OT). An occupational therapist (OT) may perform needed upper extremity splinting, provide movement inhibitory techniques, train fine motor coordination, provide an assistive device, or teach alternative methods of activity performance to achieve a patient's goals for bathing, dressing, toileting, and other valued activities.
Recent research has investigated further into the role of physiotherapy in the treatment of dystonia. A recent study showed that reducing psychological stress, in conjunction with exercise, is beneficial for reducing truncal dystonia in patients with Parkinson’s Disease. Another study emphasized progressive relaxation, isometric muscle endurance, dynamic strength, coordination, balance, and body perception, seeing significant improvements to patients’ quality of life after 4 weeks.
Since the root of the problem is neurological, doctors have explored sensorimotor retraining activities to enable the brain to "rewire" itself and eliminate dystonic movements. The work of several doctors such as Nancy Byl and Joaquin Farias has shown that sensorimotor retraining activities and proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost due to Cervical Dystonia, hand dystonia, blepharospasm, oromandibular dystonia, dysphonia and musicians' dystonia.
Some focal dystonias have been proven treatable through movement retraining in the Taubman approach, particularly in the case of musicians. However other focal dystonias may not respond and may even be made worse by this treatment.
Due to the rare and variable nature of dystonia, research investigating the effectiveness of these treatments is limited. There is no "gold standard" for physiotherapy rehabilitation. To date, focal cervical dystonia has received the most research attention; however, study designs are poorly controlled and limited to small sample sizes.
A 1969 study of torsion dystonia patients found an average IQ 10 points higher than controls matched for age, sex and ethnic background.
The main symptoms involve involuntary blinking and chin thrusting. Some patients may experience excessive tongue protrusion, squinting, light sensitivity, muddled speech, or uncontrollable contraction of the platysma muscle. Some Meige's patients also have "laryngeal dystonia" (spasms of the larynx). Blepharospasm may lead to embarrassment in social situations, and oromandibular dystonia can affect speech, making it difficult to carry on the simplest conversations. This can cause difficulty in both personal and professional contexts, and in some cases may cause patients to withdraw from social situations.
The condition tends to affect women more frequently than men.
Diagnosis is similar, but slightly different for each type of PD. Some types are more understood than others, and therefore have more criteria for diagnosis.
The guidelines for diagnosing PKD were reviewed and confirmed by Unterberger and Trinka. PKD consists of unexpected forms of involuntary movements of the body. The patient is usually diagnosed sometime before their 20's, and is more likely diagnosed during childhood than early adulthood. Almost all PKD's are idiopathic, but there have been examples of autosomal dominant inheritance as well. Physical examination and brain imaging examinations show normal results, and an EEG shows no specific abnormalities as well. However, the negative synchronous EEG results can be used to prove that PKD is not a sort of reflex epilepsy, but a different disease.
PKD is the most prevalent subtype of paroxysmal dyskinesia, encompassing over 80% of all given PD diagnosis. PKD is more prevalent in boys, usually as high as 3.75:1.
Treatment of tics present in conditions such as Tourette’s syndrome begins with patient, relative, teacher and peer education about the presentation of the tics. Sometimes, pharmacological treatment is unnecessary and tics can be reduced by behavioral therapy such as habit-reversal therapy and/or counseling. Often this route of treatment is difficult because it depends most heavily on patient compliance. Once pharmacological treatment is deemed most appropriate, lowest effective doses should be given first with gradual increases. The most effective drugs belong to the neuroleptic variety such as monoamine-depleting drugs and dopamine receptor-blocking drugs. Of the monoamine-depleting drugs, tetrabenazine is most powerful against tics and results in fewest side effects. A non-neuroleptic drug found to be safe and effective in treating tics is topiramate. Botulinum toxin injection in affected muscles can successfully treat tics; involuntary movements and vocalizations can be reduced, as well as life-threatening tics that have the potential of causing compressive myelopathy or radiculopathy. Surgical treatment for disabling Tourette’s syndrome has been proven effective in cases presenting with self-injury. Deep Brain Stimulation surgery targeting the globus pallidus, thalamus and other areas of the brain may be effective in treating involuntary and possibly life-threatening tics.
Treatment of primary dystonia is aimed at reducing symptoms such as involuntary movements, pain, contracture, embarrassment, and to restore normal posture and improve the patient’s function. This treatment is therefore not neuroprotective. According to the European Federation of Neurological Sciences and Movement Disorder Society, there is no evidence-based recommendation for treating primary dystonia with antidopaminergic or anticholinergic drugs although recommendations have been based on empirical evidence. Anticholinergic drugs prove to be most effective in treating generalized and segmental dystonia, especially if dose starts out low and increases gradually. Generalized dystonia has also been treated with such muscle relaxants as the benzodiazepines. Another muscle relaxant, baclofen, can help reduce spasticity seen in cerebral palsy such as dystonia in the leg and trunk. Treatment of secondary dystonia by administering levodopa in dopamine-responsive dystonia, copper chelation in Wilson’s disease, or stopping the administration of drugs that may induce dystonia have been proven effective in a small number of cases. Physical therapy has been used to improve posture and prevent contractures via braces and casting, although in some cases, immobilization of limbs can induce dystonia, which is by definition known as peripherally induced dystonia. There are not many clinical trials that show significant efficacy for particular drugs, so medical of dystonia must be planned on a case-by-case basis. Botulinum toxin B, or Myobloc, has been approved by the US Food and Drug Administration to treat cervical dystonia due to level A evidential support by the scientific community. Surgery known as GPi DBS (Globus Pallidus Pars Interna Deep Brain Stimulation) has come to be popular in treating phasic forms of dystonia, although cases involving posturing and tonic contractions have improved to a lesser extent with this surgery. A follow-up study has found that movement score improvements observed one year after the surgery was maintained after three years in 58% of the cases. It has also been proven effective in treating cervical and cranial-cervical dystonia.
Many drugs used to treat myoclonus dystonia do not have a significant impact individually, but when combined, can work on different brain mechanisms to best alleviate symptoms. The method of treatment used depends on the severity of the symptoms presented in the individual, and whether the underlying cause of the syndrome is known.
To date, there is no single, universal treatment that has been found to cure myoclonus dystonia. However, there are several treatment methods that have been found to be effective for helping to reduce the symptoms associated with the syndrome.
Due to the condition's rarity, it is frequently misdiagnosed, often as cerebral palsy. This results in patients often living their entire childhood with the condition untreated.
The diagnosis of SS can be made from a typical history, a trial of dopamine medications, and genetic testing. Not all patients show mutations in the GCH1 gene (GTP cyclohydrolase I), which makes genetic testing imperfect.
Sometimes a lumbar puncture is performed to measure concentrations of biopterin and neopterin, which can help determine the exact form of dopamine-responsive movement disorder: early onset parkinsonism (reduced biopterin and normal neopterin), GTP cyclohydrolase I deficiency (both decreased) and tyrosine hydroxylase deficiency (both normal).
In approximately half of cases, a phenylalanine loading test can be used to show decreased conversion from the amino acid phenylalanine to tyrosine. This process uses BH4 as a cofactor.
During a sleep study (polysomnography), decreased twitching may be noticed during REM sleep.
An MRI scan of the brain can be used to look for conditions that can mimic SS (for example, metal deposition in the basal ganglia can indicate Wilson's disease or pantothenate kinase-associated neurodegeneration). Nuclear imaging of the brain using positron emission tomography (PET scan) shows a normal radiolabelled dopamine uptake in SS, contrary to the decreased uptake in Parkinson's disease.
Other differential diagnoses include metabolic disorders (such as GM2 gangliosidosis, phenylketonuria, hypothyroidism, Leigh disease) primarily dystonic juvenile parkinsonism, autosomal recessive early onset parkinsonism with diurnal fluctuation, early onset idiopathic parkinsonism, focal dystonias, dystonia musculorum deformans and dyspeptic dystonia with hiatal hernia.
- Diagnosis - main
- typically referral by GP to specialist Neurological Hospital e.g. National Hospital in London.
- very hard to diagnose as condition is dynamic w.r.t. time-of-day AND dynamic w.r.t. age of patient.
- correct diagnosis only made by a consultant neurologist with a complete 24-hour day-cycle observation(with video/film) at a Hospital i.e. morning(day1)->noon->afternoon->evening->late-night->sleep->morning(day2).
- patient with suspected SS required to walk in around hospital in front of Neuro'-consultant at selected daytime intervals to observe worsening walking pattern coincident with increased muscle tension in limbs.
- throughout the day, reducing leg-gait, thus shoe heels catching one another.
- diurnal affect of condition: morning(fresh/energetic), lunch(stiff limbs), afternoon(very stiff limbs), evening(limbs worsening), bedtime(limbs near frozen).
- muscle tension in thighs/arms: morning(normal), lunch(abnormal), afternoon(very abnormal), evening(bad), bedtime(frozen solid).
- Diagnosis - additional
- lack of self-esteem at school/college/University -> eating disorders in youth thus weight gains.
- lack of energy during late-daytime (teens/adult) -> compensate by over-eating.
Sporadic cases may be brought on by minor head injuries and concussions. This was observed in one patient who started experiencing painless dystonia after mild exercise following a concussion. More research still needs to be done to determine how injuries can induce PED, as little is known in this area. Two cases of PED have been associated with insulinomas, after removal of which the symptoms of PED were resolved.
This condition is often treated with injections of botox, a commercially prepared form of botulinum toxin. Botox reduces the symptoms of the disorder but it is not a cure for dystonia. Since the root of the problem is neurological, doctors have explored sensorimotor retraining activities to enable the brain to "rewire" itself and eliminate dystonic movements. The work of several doctors such as Nancy Byl and Joaquin Farias has shown that sensorimotor retraining activities and proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost to focal dystonia.
Anticholinergics such as Artane can be prescribed for off-label use, as some sufferers have had success.
Bass guitarist and instructor Scott Devine said that he wears a glove while playing bass guitar because of the condition. He finds that the glove stops the involuntary finger movements. He says it works for him but does not suggest that it may work for everyone with the condition.